3D graphs with NetworkX, VTK, and
ParaView

Alex Razoumov
alex.razoumov@westgrid.ca

WestGrid / Compute Canada

copy of these slides and other files at http://bit.ly/3dgraphs
- will download 3dgraphs.zip

By o—— e

http://bit.ly/3dgraphs

%o Geewes Glwemoesecss se oo
2D graphs

¢ Many tools, most popular ones are Gephi, Cytoscape (both open source)

® You can find a copy of the Gephi webinar notes (March 2016) at
http://bit.ly/gephibits

How can we extend this to 3D? And do we really want to?

By o—— ey

http://bit.ly/gephibits

Intro Tools Graphs/layouts Selection Statistics
el lelo] 0000000000 00000000000 0000 {elele} 000

3D graphs

® Force Atlas 3D plugin for Gephi http://bit.ly/1QcLuLK gives a 2D projection with
nodes as spheres at (x,y,z) and the proper perspective and lighting, but can’t interact with
the graph in 3D

® Functional brain network visualization tools, e.g., Connectome Viewer
http://cmtk.org/viewer

® Graphlnsight was a fantastic tool, free academic license, embedded Python shell — went to
the dark side in the fall 2013 (purchased by a bank, no longer exists, can still find demo
versions and youtube videos)

® Walrus http://www.caida.org/tools/visualization/walrus was a research project, latest
update in 2005, old source still available but people seem to have trouble compiling and running it now

® Network3D from Microsoft seems to be a short-lived research project, Windows only

® BioLayout Express 3D http://www.biolayout.org/download is Ok, written in Java,
development stopped in 2014 but still works, only the commercial tool maintained ($500)

® ORA NetScenes from Carnegie Mellon for “networked text visualization”, not bad, Windows only, not
open-source, licensing not clear (more of a demo license, they reserve the right to make it paid)
® Number of other research projects not targeting end users, e.g.,
http://www.opengraphiti.com (pain to compile: tends to pick /usr/bin/python, only
Mac/Linux), or WebGL projects https://youtu.be/qHkjSxbnzAU that really require
programming knowledge
> https://markwolff.shinyapps.io/QMtriplot17C/ isanice WebGL example in R + Shiny

(WestGrid / Compute Canada) May 24, 2016 3/36

http://bit.ly/1QcLuLK
http://cmtk.org/viewer
http://www.caida.org/tools/visualization/walrus
http://www.biolayout.org/download
http://www.opengraphiti.com
https://youtu.be/qHkjSxbnzAU
https://markwolff.shinyapps.io/QMtriplot17C/

Is there any good, open-source, cross-platform,
currently maintained, user-friendly dedicated 3D
graph visualization tool?

By o—— e

Intro Tools Graphs/layouts Selection Statistics
oooe 0000000000 0000000000000 00 000 000

What are the options?

e Code your own graph visualization in JavaScript and WebGL

e NetworkX + MayaVihttp://bit.1ly/1MyvIA8; MayaVi's terminal
tends to slow down after complex visualizations (bug both in Windows
and Mac implementations)

e Colleague of mine suggested using a chemistry tool Jmol to visualize
graphs (e.g., http://www.vesnam.com/Rblog/viznets4 creates
graphs with R and displays them with Jmol); “would require some
customisations to trigger the selections of adjacent nodes when clicking
on one”; Jmol works as a Java Application on the desktop and as Java
applet and JavaScript in the browser

(WestGrid / Compute Canada) May 24, 2016 5/36

http://bit.ly/1MyvIA8
http://www.vesnam.com/Rblog/viznets4

Intro Tools Graphs/layouts Selection Statistics
0000 ®000000000 O00000000000000 000 000

NetworkX + VTK + ParaView

e Our solution: NetworkX + VTK + ParaView

» advantage: (1) using general-purpose visualization tool; (2) everything is
scriptable; (3) can scale directly to 1075 nodes, with a little extra care to
10~ nodes, and with some thought to 10~° nodes

» disadvantages: graphs are static 3D objects, can’t click on a node, highlight
connections, move nodes, etc. (but we can script these interactions!)

» note: in the current implementation edges are displayed as straight lines;
possible to use vtkArcSource or vtkPolyLine to create arcs and store them as
vtkPolyData

(1) We'll use NetworkX + VTK to create a graph, position nodes, optionally
compute graph statistics, and write everything to a VTK file; we’ll do this
in Python 2.7 (VIK for Python 3 is not quite ready)

(2) Load that file into ParaView

e ParaView comes with its own Python shell and VTK, but it is somewhat
tricky to install NetworkX there

(WestGrid / Compute Canada) May 24, 2016 6 /36

Intro Tools Graphs/layouts Selection Statistics
[elelelo] O®00000000 00000000000 0000 {elele} 000

What is VTK?

e 3D Visualization Toolkit software system for 3D computer graphics, image
processing, and visualization

e Open-source and cross-platform (Windows, Mac, Linux, other Unix variants)
e Suppors OpenGL hardware acceleration
e C++ class library, with interpreted interface layers for Python, Java, Tcl/Tk

e Supports wide variety of visualization and processing algorithms for polygon
rendering, ray tracing, mesh smoothing, cutting, contouring, Delaunay
triangulation, etc.

e Supports many data types: scalar, vector, tensor, texture, arrays of arrays

e Supports many 2D/3D spatial discretizations: structured and unstructured
meshes, particles, polygons, etc. — see next slide

e Includes a suite of 3D interaction widgets, integrates nicely with several popular
cross-platform GUI toolkits (Qt, Tk)

e Supports parallel processing and parallel I/O
e Base layer of several really good 3D visualization packages (ParaView, Vislt,

MayaVi, and several others)

(WestGrid / Compute Canada) May 24, 2016 7 /36

Intro Tools Graphs/layouts Selection Statistics
[elelelo] 0O®0000000 00000000000 0000 {elele} 000

VTK 2D /3D data: 6 major discretizations (mesh types)

e Image Data/Structured Points: *.vti, points on a { —
regul lar latti] EARmEE.
gular rectangular lattice, scalars or vectors at { __l I |
each point EEEEREE]

¢ Rectilinear Grid: *.vtr, same as Image Data, but
spacing between points may vary, need to
provide steps along the coordinate axes, not
coordinates of each point

e Structured Grid: *.vts, regular topology and
irregular geometry, need to indicate coordinates
of each point

(WestGrid / Compute Canada) May 24, 2016 8 /36

Intro Tools Graphs/layouts Selection Statistics
0000 O00®000000 O00000000000000 000 000

VTK 2D /3D data: 6 major discretizations (mesh types)

o Particles/Unstructured Points: *.particles

(d) Unstn

¢ Polygonal Data: *.vtp, unstructured topology RO e
and geometry, point coordinates, 2D cells only e N
(i.e. no polyhedra), suited for maps [ApH

e Unstructured Grid: *.vtu, irregular in both
topology and geometry, point coordinates,
2D /3D cells, suited for finite element analysis,
structural design

(£) Unstructured Grid

(WestGrid / Compute Canada) May 24, 2016 9/36

Intro Tools Graphs/layouts Selection Statistics
[elelelo] 0000e00000 00000000000 0000 {elele} 000

ParaView as GUI frontend to VTK classes

¢ 3D visualization tool for extremely large datasets
e Scales from laptops to supercomputers with 10°> cores

¢ Open source, binary downloads for Linux/Mac/Windows from
http://www.paraview.org

e Interactive GUI and Python scripting
e Client-server architecture
¢ Uses MPI for distributed-memory parallelism on HPC clusters

¢ Based on VTK (developed by the same folks), fully supports all VTK
classes and data types

e Huge array of visualization features

(WestGrid / Compute Canada) May 24, 2016 10/ 36

http://www.paraview.org

Intro Tools Graphs/layouts Selection Statistics
0000 O0000®0000 000000000000 000 (ele/e} 000

Installation

For your OS install ParaView from http://www.paraview.org/download

For your OS install Python 2.7 Miniconda distribution from
http://conda.pydata.org/miniconda.html

» in Miniconda, as of this writing, VTK not yet available in Python 3.5

Start the command shell (terminal in MacOS/Linux, DOS prompt in
Windows) and then install two Python packages:

conda install vtk
conda install networkx

Start Python and test your Miniconda installation:

import vtk
import networkx as nx

(WestGrid / Compute Canada) May 24, 2016 11/36

http://conda.pydata.org/miniconda.html

CSRe emewo aemcoemos o se
NetworkX graphs

e NetworkXis a Python package for the creation, manipulation, and
analysis of complex networks

o Documentation at http://networkx.github.io
import networkx as nx

return all names (attributes and methods) inside nx
dir (nx)

generate a list (of 105) built-in graph types

with Python’s ‘‘list comprehension’’
[x for x in dir(nx) if ’_graph’ in x]

By o—— Ty

http://networkx.github.io

NetworkX layouts

generate a list built-in graph layouts

[x for x in dir(nx) 1if ’_layout’ in x]

will print [’circular_layout’,

/fruchterman_reingold_ layout’, ’random_layout’,

’shell_layout’, ’spectral_layout’, ’spring_layout’]

can always look at the help pages
help (nx.circular_layout)

e spring_and fruchterman_reingold_ are the same, so really 5
built-in layouts

e can use 3rd-party layouts (you'll see at least one later in this presentation)
e circular_, random_, shell_ are fixed layouts

e spring_and spectral_ are force-directed layouts: linked nodes
attract each other, non-linked nodes are pushed apart

S ey o —r———— e B

NetworkX layouts

e Layouts typically return a dictionary, with each element being a 2D /3D
coordinate array indexed by the node’s number (or name)

generate a random graph
H = nx.gnm_random_graph (10, 50)

the first element of the dictionary is a 2D array
(currently only dim=2 is supported)
nx.shell_layout (H,dim=3) [0]

nx.circular_layout (H,dim=3) [0]

the first element of the dictionary is a 3D array
nx.spring_layout (H,dim=3) [0]

nx.random_layout (H,dim=3) [0]

nx.spectral_layout (H,dim=3) [0]

S ey o —r———— TR

Intro Tools Graphs/layouts Selection Statistics
[elelelo] 000000000 e 00000000000 0000 {elele} 000

Custom Python function to write graphs as VIK

¢ Function writeObjects() in writeNodesEdges.py
e Stores graphs as vtkPolyData or vtkUnstructuredGrid

def writeObjects (nodeCoords,
edges = [],
scalar = [], name = '’, power = 1,
scalar2 = [], name2 = ’’, power2 = 1,
nodeLabel = [],
method = ’‘vtkPolyData’,
fileout = “"test’):

Store points and/or graphs as vtkPolyData or vtkUnstructuredGrid.
Required argument:

— nodeCoords is a list of node coordinates in the format [x,y,z]
Optional arguments:

— edges is a list of edges in the format [nodelD1,nodelD2]

— scalar/scalar2 is the list of scalars for each node

— name/name2 is the scalar’s name

— power/power2 = 1 for r~scalars, 0.333 for V~scalars

— nodeLabel is a list of node labels

— method = ’vtkPolyData’ or ’vtkUnstructuredGrid’

— fileout is the output file name (will be given .vtp or .vtu extension)

wan

(WestGrid / Compute Canada) May 24, 2016 15/ 36

Our first graph (randomGraph.py)

import networkx as nx
from writeNodesEdges import writeObjects

numberNodes, numberEdges = 100, 500

H = nx.gnm_random_graph (numberNodes, numberEdges)
print ’'nodes:’, H.nodes ()

print ’"edges:’, H.edges|()

return a dictionary of positions keyed by node
pos = nx.random_layout (H,dim=3)

convert to list of positions (each is a 1list)

xyz = [list (pos[i]) for 1 in pos]

degree = H.degree () .values/()

writeObjects (xyz, edges=H.edges (), scalar=degree,
name='degree’, fileout='network’)

S ey o —r———— TR

Our first graph (randomGraph.py)

17/ 36

May 24, 2016

Intro Tools Graphs/layouts Selection Statistics
0000 0000000000 OO®@000000000000 [e]ele} 000

Load this graph into ParaView

e After you run “python randomGraph.py” from the command line, to
reproduce the previous slide, you have three options:

1 Load the file network. vtp, apply Glyph filter, apply Tube filter, edit
their properties, or

2 In ParaView’s menu navigate to File -> Load State and select
drawGraph.pvsm, or
» important: adjust the data file location!

$ grep Users drawGraph.pvsm
<Element index="0" value="/Users/razoumov/teaching/humanities/network.vtp"/>
<Element index="0" value="/Users/razoumov/teaching/humanities/network.vtp"/>

3 On a Unix-based system start ParaView and load the state with one
command:
/Applications/paraview .app/Contents /MacOS/paraview —state=drawGraph.pvsm

(WestGrid / Compute Canada) May 24, 2016 18/ 36

oo oo ovomeasesese oo oo
Labeling nodes

1 Press V to bring up Find Data dialogue
2 Find Points with ID>=0 (or other selection)
3 Make points visible in the pipeline browser

4 Check Point Labels -> ID (can also do this operation from View ->
Selection Display Inspector)

5 Adjust the label font size

6 Set original data opacity to 0

Also we can label only few selected points, e.g., those with degree > 10

S ey o —r———— e T

Switch to spring layout

e Let’s apply a force-directed layout

$ diff randomGraph.py randomGraph?2.py
10cl0
< pos = nx.random_layout (H,dim=3)

> pos = nx.spring_layout (H,dim=3, k=1)

¢ Run “python randomGraph2.py” from the command line
e Press Disconnect to clear everything from the pipeline browser

¢ Reload the state file drawGraph.pvsm

© (WestGrid / Compute Canada) May 24,2016 20 /36

Intro
0000

Tools Graphs/layouts Selection Statistics
0000000000 [ele]elele] lololelelo]elo]ele] [e]ele} 000

Few more graphs: Moebius-Kantor graph

$ diff random2.py moebiusKantor.py

5,7c5,6

< H = nx.gnm_random_graph (numberNodes, numberEdges)

< print ’'nodes:’, H.nodes/()

< print ’'edges:’, H.edges()

> H = nx.moebius_kantor_graph ()

> print nx.number_of_nodes (H), ’'nodes and’,
nx.number_of_edges (H), ’'edges’

15al5

> print ’‘degree =’, degree

Run “python moebiusKantor.py” from the command line
Press Disconnect to clear everything from the pipeline browser
Reload the state file drawGraph.pvsm

This time probably want to adjust nodes and edges

(WestGrid / Compute Canada) May 24, 2016 21/36

Intro Tools Graphs/layouts Selection Statistics
0000 0000000000 0O00000@00000000 (ele/e} 000

Few more graphs: complete bipartite graph

Composed of two partitions with N nodes in the first and M nodes in the
second. Each node in the first set is connected to each node in the second.

$ diff moebiusKantor.py completeBipartite.py
5cb

< H = nx.moebius_kantor_graph ()

> H = nx.complete_bipartite_graph(10,5)

¢ Run “python completeBipartite.py” from the command line
e Press Disconnect to clear everything from the pipeline browser

e Reload the state file drawGraph .pvsm

(WestGrid / Compute Canada) May 24, 2016 22 /36

We are not limited to NetworkX’s built-in graphs.
Can build our own graphs with:

H = nx.Graph()

H.add_node(1) # add a single node

H.add_nodes_from ([2,3]) # add a list of nodes
H.add_edge(2,3) # add a single edge

H.add_edges_from ([(1,2),(1,3)]) # add a list of edges

Intro Tools

Graphs/layouts Selection Statistics
0000 0000000000

00000000®000000 [o]ele} 000

Dorogovtsev-Goltsev-Mendes graph

Dorogovtsev-Goltsev-Mendes graph is an interesting fractal network from
http://arxiv.org/pdf/cond-mat/0112143.pdf. In each subsequent
generation, each edge from the previous generation yields a new node, and
the new graph can be made by connecting together three previous-generation

graphs.
A

(WestGrid / Compute Canada) May 24, 2016 24 /36

http://arxiv.org/pdf/cond-mat/0112143.pdf

Dorogovtsev-Goltsev-Mendes graph (dgm. py)

import networkx as nx

from forceatlas import forceatlas2_layout

from writeNodesEdges import writeObjects

import sys

generation = int(sys.argv[1])

H = nx.dorogovtsev_goltsev_mendes_graph(generation)

Force Atlas 2 from https://github.com/tpoisot/nxfa2.git
pos = forceatlas2_layout(H, iterations=100, kr=0.001, dim=3)

convert to list of positions (each is a list)
xyz = [list(pos[i]) for i in pos]

print nx.number_of_nodes(H), ’'nodes_and’, nx.number_of_edges(H), ’'edges’
degree = H.degree(H.nodes ()). values ()
writeObjects (xyz, edges=H.edges(), scalar=degree,

name="degree’, power=0.333,

fileout="network’)

S ey o —r———— e T3

8o leseco cobomsoeossses s oo
Dorogovtsev-Goltsev-Mendes graph (7th generation)

(WestGrid / Compute Canada) May 24, 2016 26 /36

Dorogovtsev-Goltsev-Mendes graph

e From the command line run

python dgm.py 1
python dgm.py
python dgm.py

python dgm.py
python dgm.py

~ W N

takes ~15 seconds on my laptop

o Reload the state file drawGraph. pvsm, adjust glyph radii, adjust edge
colours/radii/opacities

By o—— Ty

Custom layouts

Let’s first make a flat graph:

$ diff dgm.py dgmFlat.py

9¢9

< pos=forceatlas2_layout(H, iterations=100, kr=0.001, dim=3)
> pos=forceatlas2_layout(H, iterations=100, kr=0.001, dim=2)
12c12

< xyz = [list(pos[i]) for i in pos]

> Xyz [[pos[i][0], pos[i][1], O] for i in pos]

Run this with “python dgmFlat.py 57, reload the state file drawGraph.pvsm,
adjust glyph radii

S ey o —r———— e T

Now let’s offset each node in the z-direction by a function of its degree:

$ diff dgmFlat.py dgmOffset.py
12,13d11

< xyz = [[pos[i][0], pos[i][1], O] for i in pos]
15al14,15

> xyz = [[pos[i][0], pos[i][1], (degree[i])*x0.5/5.7] for i in pos]

Run this with “python dgmOffset.py 5” and colour edges by degree.

Intro Tools Graphs/layouts Selection Statistics
[elelelo] 0000000000 0000000000000 0e {elele} 000

Social network (florentineFamilies.py)

Let’s visualize nx.florentine_families_graph(). It returns a list of edges with
the nodes indexed by the family name. The function writeObjects() expects
integer ID indices instead — hence the loop below.

import networkx as nx

from writeNodesEdges import writeObjects
H = nx.florentine_families_graph ()

nodes = H.nodes ()

index edges by their node IDs
edges = []
for edge in H.edges():
edges.append ([nodes.index (edge[0]) ,nodes.index(edge[1])])

return a dictionary of positions keyed by node
pos = nx.spring_layout (H,dim=3,k=1)

convert to list of positions (each is a list)
xyz = [list(pos[i]) for i in pos]

degree = H.degree (H.nodes ()). values ()
writeObjects (xyz, edges=edges, scalar=degree, name=’degree’,

fileout="network’, nodeLabel=nodes, power=0.333)

Note: turn on the labels!

(WestGrid / Compute Canada) May 24, 2016 30/ 36

Highlighting individual nodes

Let’s highlight nodes "Strozzi’, “Tornabuoni’, "Albizzi” with colour.

$ diff florentineFamilies.py florentineFamilies2.py
17¢c17,20
< degree = H.degree (H.nodes()) .values /()

> degree = [l]*len(nodes)

> selection = [’Strozzi’, ’'Tornabuoni’, ’'Albizzi’]
> for 1 in selection:

> degree[nodes.index(i)] = 3

By o—— Ty

Now let’s try to highlight the selection and their edges.

= That’s very easy: simply colour the edges by node degree.

Highlighting individual nodes and their neighbours

Let’s highlight neighbours of the selected nodes.

$ diff florentineFamilies2.py florentineFamilies3.py

20¢20,23

< degree[nodes.index(i)] = 3

> degree[nodes.index(i)] = 3

> for j in list(nx.all_neighbors(H,i)):

> degree[nodes.index(j)] = max(2.5,degree[nodes.index(j)])

S ey o —r———— Ty Ty

Intro Tools Graphs/layouts Selection Statistics
[elelelo] 0000000000 00000000000 0000 {elele} @00

Eigenvector centrality (dgmCentrality.py)

Let’s compute and visualize eigenvector centrality in the 5th-deneration
Dorogovtsev-Goltsev-Mendes graph with our custom 3D layout.

import networkx as nx

from forceatlas import forceatlas2_layout

from writeNodesEdges import writeObjects

H = nx.dorogovtsev_goltsev_mendes_graph(5)

pos = forceatlas2_layout(H, iterations=100, kr=0.001, dim=2)

print nx.number_of_nodes(H), ’'nodes_and’, nx.number_of_edges(H), ’"edges’
degree = H.degree(H.nodes ()). values ()

xyz = [[pos[i][0], pos[i][1], (degree[i])*x0.5/5.7] for i in pos]

compute and print eigenvector centrality

ec = nx.eigenvector_centrality (H) # dictionary of nodes with EC as the value
ecList = [ec[i] for i in ec]

print ‘degree_=’, degree

print ‘eigenvector_centrality =", ecList

print ‘min/max_=’, min(ecList), max(ecList)

writeObjects (xyz, edges=H.edges(),
scalar=degree, name=’degree’, power=0.333,
scalar2=ecList, name2='"eigenvector_centrality’, power2=0.333,
fileout="network”)

¢ Run “python dgmCentrality.py” and load into ParaView by hand

e Colour by degree, size by eigenvector centrality

(WestGrid / Compute Canada) May 24, 2016 34 /36

Gmo omsosscoss oohsbsescosseos et oeen
Other statistics in NetworkX

e Various centrality measures: degree, closeness, betweenness,
current-flow closeness, current-flow betweenness, eigenvector,
communicability, load, dispersion — see
https://networkx.readthedocs.org/en/stable/reference/
algorithms.centrality.html

e Several hundred built-in algorithms for various calculations — see
https://networkx.readthedocs.org/en/stable/reference/
algorithms.html

S ey o —r———— eI SIS

https://networkx.readthedocs.org/en/stable/reference/algorithms.centrality.html
https://networkx.readthedocs.org/en/stable/reference/algorithms.centrality.html
https://networkx.readthedocs.org/en/stable/reference/algorithms.html
https://networkx.readthedocs.org/en/stable/reference/algorithms.html

Questions?

	Intro
	Tools
	Graphs/layouts
	Selection
	Statistics

