
Intro Tools Graphs/layouts Selection Statistics

3D graphs with NetworkX, VTK, and
ParaView

Alex Razoumov
alex.razoumov@westgrid.ca

WestGrid / Compute Canada

copy of these slides and other files at http://bit.ly/3dgraphs
- will download 3dgraphs.zip

(WestGrid / Compute Canada) May 24, 2016 1 / 36

http://bit.ly/3dgraphs

Intro Tools Graphs/layouts Selection Statistics

2D graphs

• Many tools, most popular ones are Gephi, Cytoscape (both open source)

• You can find a copy of the Gephi webinar notes (March 2016) at
http://bit.ly/gephibits

How can we extend this to 3D? And do we really want to?

(WestGrid / Compute Canada) May 24, 2016 2 / 36

http://bit.ly/gephibits

Intro Tools Graphs/layouts Selection Statistics

3D graphs
• Force Atlas 3D plugin for Gephi http://bit.ly/1QcLuLK gives a 2D projection with

nodes as spheres at (x,y,z) and the proper perspective and lighting, but can’t interact with
the graph in 3D

• Functional brain network visualization tools, e.g., Connectome Viewer
http://cmtk.org/viewer

• GraphInsight was a fantastic tool, free academic license, embedded Python shell – went to
the dark side in the fall 2013 (purchased by a bank, no longer exists, can still find demo
versions and youtube videos)

• Walrus http://www.caida.org/tools/visualization/walrus was a research project, latest
update in 2005, old source still available but people seem to have trouble compiling and running it now

• Network3D from Microsoft seems to be a short-lived research project, Windows only
• BioLayout Express 3D http://www.biolayout.org/download is Ok, written in Java,

development stopped in 2014 but still works, only the commercial tool maintained ($500)
• ORA NetScenes from Carnegie Mellon for “networked text visualization”, not bad, Windows only, not

open-source, licensing not clear (more of a demo license, they reserve the right to make it paid)

• Number of other research projects not targeting end users, e.g.,
http://www.opengraphiti.com (pain to compile: tends to pick /usr/bin/python, only
Mac/Linux), or WebGL projects https://youtu.be/qHkjSxbnzAU that really require
programming knowledge

I https://markwolff.shinyapps.io/QMtriplot17C/ is a nice WebGL example in R + Shiny

(WestGrid / Compute Canada) May 24, 2016 3 / 36

http://bit.ly/1QcLuLK
http://cmtk.org/viewer
http://www.caida.org/tools/visualization/walrus
http://www.biolayout.org/download
http://www.opengraphiti.com
https://youtu.be/qHkjSxbnzAU
https://markwolff.shinyapps.io/QMtriplot17C/

Intro Tools Graphs/layouts Selection Statistics

Is there any good, open-source, cross-platform,
currently maintained, user-friendly dedicated 3D

graph visualization tool?

(WestGrid / Compute Canada) May 24, 2016 4 / 36

Intro Tools Graphs/layouts Selection Statistics

What are the options?

• Code your own graph visualization in JavaScript and WebGL

• NetworkX + MayaVi http://bit.ly/1MyvIA8; MayaVi’s terminal
tends to slow down after complex visualizations (bug both in Windows
and Mac implementations)

• Colleague of mine suggested using a chemistry tool Jmol to visualize
graphs (e.g., http://www.vesnam.com/Rblog/viznets4 creates
graphs with R and displays them with Jmol); “would require some
customisations to trigger the selections of adjacent nodes when clicking
on one”; Jmol works as a Java Application on the desktop and as Java
applet and JavaScript in the browser

(WestGrid / Compute Canada) May 24, 2016 5 / 36

http://bit.ly/1MyvIA8
http://www.vesnam.com/Rblog/viznets4

Intro Tools Graphs/layouts Selection Statistics

NetworkX + VTK + ParaView

• Our solution: NetworkX + VTK + ParaView
I advantage: (1) using general-purpose visualization tool; (2) everything is

scriptable; (3) can scale directly to 10∼5.5 nodes, with a little extra care to
10∼7.5 nodes, and with some thought to 10∼9.5 nodes

I disadvantages: graphs are static 3D objects, can’t click on a node, highlight
connections, move nodes, etc. (but we can script these interactions!)

I note: in the current implementation edges are displayed as straight lines;
possible to use vtkArcSource or vtkPolyLine to create arcs and store them as
vtkPolyData

(1) We’ll use NetworkX + VTK to create a graph, position nodes, optionally
compute graph statistics, and write everything to a VTK file; we’ll do this
in Python 2.7 (VTK for Python 3 is not quite ready)

(2) Load that file into ParaView

• ParaView comes with its own Python shell and VTK, but it is somewhat
tricky to install NetworkX there

(WestGrid / Compute Canada) May 24, 2016 6 / 36

Intro Tools Graphs/layouts Selection Statistics

What is VTK?

• 3D Visualization Toolkit software system for 3D computer graphics, image
processing, and visualization

• Open-source and cross-platform (Windows, Mac, Linux, other Unix variants)

• Suppors OpenGL hardware acceleration

• C++ class library, with interpreted interface layers for Python, Java, Tcl/Tk

• Supports wide variety of visualization and processing algorithms for polygon
rendering, ray tracing, mesh smoothing, cutting, contouring, Delaunay
triangulation, etc.

• Supports many data types: scalar, vector, tensor, texture, arrays of arrays

• Supports many 2D/3D spatial discretizations: structured and unstructured
meshes, particles, polygons, etc. – see next slide

• Includes a suite of 3D interaction widgets, integrates nicely with several popular
cross-platform GUI toolkits (Qt, Tk)

• Supports parallel processing and parallel I/O

• Base layer of several really good 3D visualization packages (ParaView, VisIt,
MayaVi, and several others)

(WestGrid / Compute Canada) May 24, 2016 7 / 36

Intro Tools Graphs/layouts Selection Statistics

VTK 2D/3D data: 6 major discretizations (mesh types)

• Image Data/Structured Points: *.vti, points on a
regular rectangular lattice, scalars or vectors at
each point

• Rectilinear Grid: *.vtr, same as Image Data, but
spacing between points may vary, need to
provide steps along the coordinate axes, not
coordinates of each point

• Structured Grid: *.vts, regular topology and
irregular geometry, need to indicate coordinates
of each point

(WestGrid / Compute Canada) May 24, 2016 8 / 36

Intro Tools Graphs/layouts Selection Statistics

VTK 2D/3D data: 6 major discretizations (mesh types)

• Particles/Unstructured Points: *.particles

• Polygonal Data: *.vtp, unstructured topology
and geometry, point coordinates, 2D cells only
(i.e. no polyhedra), suited for maps

• Unstructured Grid: *.vtu, irregular in both
topology and geometry, point coordinates,
2D/3D cells, suited for finite element analysis,
structural design

(WestGrid / Compute Canada) May 24, 2016 9 / 36

Intro Tools Graphs/layouts Selection Statistics

ParaView as GUI frontend to VTK classes
• 3D visualization tool for extremely large datasets
• Scales from laptops to supercomputers with 105.5 cores
• Open source, binary downloads for Linux/Mac/Windows from
http://www.paraview.org

• Interactive GUI and Python scripting
• Client-server architecture
• Uses MPI for distributed-memory parallelism on HPC clusters
• Based on VTK (developed by the same folks), fully supports all VTK

classes and data types
• Huge array of visualization features

(WestGrid / Compute Canada) May 24, 2016 10 / 36

http://www.paraview.org

Intro Tools Graphs/layouts Selection Statistics

Installation

• For your OS install ParaView from http://www.paraview.org/download

• For your OS install Python 2.7 Miniconda distribution from
http://conda.pydata.org/miniconda.html

I in Miniconda, as of this writing, VTK not yet available in Python 3.5

• Start the command shell (terminal in MacOS/Linux, DOS prompt in
Windows) and then install two Python packages:

conda install vtk
conda install networkx

• Start Python and test your Miniconda installation:

import vtk
import networkx as nx

(WestGrid / Compute Canada) May 24, 2016 11 / 36

http://conda.pydata.org/miniconda.html

Intro Tools Graphs/layouts Selection Statistics

NetworkX graphs

• NetworkX is a Python package for the creation, manipulation, and
analysis of complex networks

• Documentation at http://networkx.github.io

import networkx as nx

return all names (attributes and methods) inside nx
dir(nx)

generate a list (of 105) built-in graph types
with Python’s ‘‘list comprehension’’
[x for x in dir(nx) if ’_graph’ in x]

(WestGrid / Compute Canada) May 24, 2016 12 / 36

http://networkx.github.io

Intro Tools Graphs/layouts Selection Statistics

NetworkX layouts

generate a list built-in graph layouts
[x for x in dir(nx) if ’_layout’ in x]
will print [’circular_layout’,
’fruchterman_reingold_layout’, ’random_layout’,
’shell_layout’, ’spectral_layout’, ’spring_layout’]

can always look at the help pages
help(nx.circular_layout)

• spring_ and fruchterman_reingold_ are the same, so really 5
built-in layouts

• can use 3rd-party layouts (you’ll see at least one later in this presentation)

• circular_ , random_ , shell_ are fixed layouts

• spring_ and spectral_ are force-directed layouts: linked nodes
attract each other, non-linked nodes are pushed apart

(WestGrid / Compute Canada) May 24, 2016 13 / 36

Intro Tools Graphs/layouts Selection Statistics

NetworkX layouts

• Layouts typically return a dictionary, with each element being a 2D/3D
coordinate array indexed by the node’s number (or name)

generate a random graph
H = nx.gnm_random_graph(10,50)

the first element of the dictionary is a 2D array
(currently only dim=2 is supported)
nx.shell_layout(H,dim=3)[0]
nx.circular_layout(H,dim=3)[0]

the first element of the dictionary is a 3D array
nx.spring_layout(H,dim=3)[0]
nx.random_layout(H,dim=3)[0]
nx.spectral_layout(H,dim=3)[0]

(WestGrid / Compute Canada) May 24, 2016 14 / 36

Intro Tools Graphs/layouts Selection Statistics

Custom Python function to write graphs as VTK

• Function writeObjects() in writeNodesEdges.py
• Stores graphs as vtkPolyData or vtkUnstructuredGrid

def wr i te Ob j ec t s (nodeCoords ,
edges = [] ,
s c a l a r = [] , name = ’ ’ , power = 1 ,
s c a l a r 2 = [] , name2 = ’ ’ , power2 = 1 ,
nodeLabel = [] ,
method = ’ vtkPolyData ’ ,
f i l e o u t = ’ t e s t ’) :

" " "
S tore points and/or graphs as vtkPolyData or vtkUnstructuredGrid .
Required argument :
− nodeCoords i s a l i s t of node coordinates in the format [x , y , z]
Optional arguments :
− edges i s a l i s t of edges in the format [nodeID1 , nodeID2]
− s c a l a r / s c a l a r 2 i s the l i s t of s c a l a r s f o r each node
− name/name2 i s the s c a l a r ’ s name
− power/power2 = 1 f o r r~ s c a l a r s , 0 .333 f o r V~ s c a l a r s
− nodeLabel i s a l i s t of node l a b e l s
− method = ’ vtkPolyData ’ or ’ vtkUnstructuredGrid ’
− f i l e o u t i s the output f i l e name (w i l l be given . vtp or . vtu extens ion)
" " "

(WestGrid / Compute Canada) May 24, 2016 15 / 36

Intro Tools Graphs/layouts Selection Statistics

Our first graph (randomGraph.py)

import networkx as nx
from writeNodesEdges import writeObjects

numberNodes, numberEdges = 100, 500
H = nx.gnm_random_graph(numberNodes,numberEdges)
print ’nodes:’, H.nodes()
print ’edges:’, H.edges()

return a dictionary of positions keyed by node
pos = nx.random_layout(H,dim=3)

convert to list of positions (each is a list)
xyz = [list(pos[i]) for i in pos]

degree = H.degree().values()
writeObjects(xyz, edges=H.edges(), scalar=degree,

name=’degree’, fileout=’network’)

(WestGrid / Compute Canada) May 24, 2016 16 / 36

Intro Tools Graphs/layouts Selection Statistics

Our first graph (randomGraph.py)

(WestGrid / Compute Canada) May 24, 2016 17 / 36

Intro Tools Graphs/layouts Selection Statistics

Load this graph into ParaView

• After you run “python randomGraph.py” from the command line, to
reproduce the previous slide, you have three options:

1 Load the file network.vtp, apply Glyph filter, apply Tube filter, edit
their properties, or

2 In ParaView’s menu navigate to File -> Load State and select
drawGraph.pvsm, or

I important: adjust the data file location!

$ grep Users drawGraph . pvsm
<Element index=" 0 " value="/Users/razoumov/teaching/humanities/network . vtp "/>
<Element index=" 0 " value="/Users/razoumov/teaching/humanities/network . vtp "/>

3 On a Unix-based system start ParaView and load the state with one
command:

/Appl ica t ions/paraview . app/Contents/MacOS/paraview −−s t a t e =drawGraph . pvsm

(WestGrid / Compute Canada) May 24, 2016 18 / 36

Intro Tools Graphs/layouts Selection Statistics

Labeling nodes

1 Press V to bring up Find Data dialogue

2 Find Points with ID>=0 (or other selection)

3 Make points visible in the pipeline browser

4 Check Point Labels -> ID (can also do this operation from View ->
Selection Display Inspector)

5 Adjust the label font size

6 Set original data opacity to 0

Also we can label only few selected points, e.g., those with degree ≥ 10

(WestGrid / Compute Canada) May 24, 2016 19 / 36

Intro Tools Graphs/layouts Selection Statistics

Switch to spring layout

• Let’s apply a force-directed layout

$ diff randomGraph.py randomGraph2.py
10c10
< pos = nx.random_layout(H,dim=3)

> pos = nx.spring_layout(H,dim=3,k=1)

• Run “python randomGraph2.py” from the command line

• Press Disconnect to clear everything from the pipeline browser

• Reload the state file drawGraph.pvsm

(WestGrid / Compute Canada) May 24, 2016 20 / 36

Intro Tools Graphs/layouts Selection Statistics

Few more graphs: Moebius-Kantor graph

$ diff random2.py moebiusKantor.py
5,7c5,6
< H = nx.gnm_random_graph(numberNodes,numberEdges)
< print ’nodes:’, H.nodes()
< print ’edges:’, H.edges()

> H = nx.moebius_kantor_graph()
> print nx.number_of_nodes(H), ’nodes and’,

nx.number_of_edges(H), ’edges’
15a15
> print ’degree =’, degree

• Run “python moebiusKantor.py” from the command line
• Press Disconnect to clear everything from the pipeline browser
• Reload the state file drawGraph.pvsm
• This time probably want to adjust nodes and edges

(WestGrid / Compute Canada) May 24, 2016 21 / 36

Intro Tools Graphs/layouts Selection Statistics

Few more graphs: complete bipartite graph

Composed of two partitions with N nodes in the first and M nodes in the
second. Each node in the first set is connected to each node in the second.

$ diff moebiusKantor.py completeBipartite.py
5c5
< H = nx.moebius_kantor_graph()

> H = nx.complete_bipartite_graph(10,5)

• Run “python completeBipartite.py” from the command line

• Press Disconnect to clear everything from the pipeline browser

• Reload the state file drawGraph.pvsm

(WestGrid / Compute Canada) May 24, 2016 22 / 36

Intro Tools Graphs/layouts Selection Statistics

Your own graphs

We are not limited to NetworkX’s built-in graphs.
Can build our own graphs with:

H = nx . Graph ()
H. add_node (1) # add a s i n g l e node
H. add_nodes_from ([2 , 3]) # add a l i s t o f nodes
H. add_edge (2 , 3) # add a s i n g l e edge
H. add_edges_from ([(1 , 2) , (1 , 3)]) # add a l i s t o f e d g e s
. . .

(WestGrid / Compute Canada) May 24, 2016 23 / 36

Intro Tools Graphs/layouts Selection Statistics

Dorogovtsev-Goltsev-Mendes graph

Dorogovtsev-Goltsev-Mendes graph is an interesting fractal network from
http://arxiv.org/pdf/cond-mat/0112143.pdf. In each subsequent
generation, each edge from the previous generation yields a new node, and
the new graph can be made by connecting together three previous-generation
graphs.

(WestGrid / Compute Canada) May 24, 2016 24 / 36

http://arxiv.org/pdf/cond-mat/0112143.pdf

Intro Tools Graphs/layouts Selection Statistics

Dorogovtsev-Goltsev-Mendes graph (dgm.py)

import networkx as nx
from f o r c e a t l a s import f o r c e a t l a s 2 _ l a y o u t
from writeNodesEdges import wr i teO b je c t s
import sys
generat ion = i n t (sys . argv [1])
H = nx . dorogovtsev_goltsev_mendes_graph (generat ion)

F o r c e A t l a s 2 from h t t p s : / / g i t h u b . com / t p o i s o t / nx fa2 . g i t
pos = f o r c e a t l a s 2 _ l a y o u t (H, i t e r a t i o n s =100 , kr =0 .001 , dim=3)

c o n v e r t t o l i s t o f p o s i t i o n s (e a c h i s a l i s t)
xyz = [l i s t (pos [i]) f o r i in pos]

p r i n t nx . number_of_nodes (H) , ’ nodes and ’ , nx . number_of_edges (H) , ’ edges ’
degree = H. degree (H. nodes ()) . values ()
wr i te Ob j ec t s (xyz , edges=H. edges () , s c a l a r =degree ,

name= ’ degree ’ , power =0 .333 ,
f i l e o u t = ’ network ’)

(WestGrid / Compute Canada) May 24, 2016 25 / 36

Intro Tools Graphs/layouts Selection Statistics

Dorogovtsev-Goltsev-Mendes graph (7th generation)

(WestGrid / Compute Canada) May 24, 2016 26 / 36

Intro Tools Graphs/layouts Selection Statistics

Dorogovtsev-Goltsev-Mendes graph

• From the command line run

python dgm.py 1
python dgm.py 2
python dgm.py 3
python dgm.py 4
python dgm.py 7 # takes ~15 seconds on my laptop

• Reload the state file drawGraph.pvsm, adjust glyph radii, adjust edge
colours/radii/opacities

(WestGrid / Compute Canada) May 24, 2016 27 / 36

Intro Tools Graphs/layouts Selection Statistics

Custom layouts

Let’s first make a flat graph:

$ d i f f dgm. py dgmFlat . py
9 c9
< pos= f o r c e a t l a s 2 _ l a y o u t (H, i t e r a t i o n s =100 , kr =0 .001 , dim=3)
−−−
> pos= f o r c e a t l a s 2 _ l a y o u t (H, i t e r a t i o n s =100 , kr =0 .001 , dim=2)
12 c12
< xyz = [l i s t (pos [i]) f o r i in pos]
−−−
> xyz = [[pos [i] [0] , pos [i] [1] , 0] f o r i in pos]

Run this with “python dgmFlat.py 5”, reload the state file drawGraph.pvsm,
adjust glyph radii

(WestGrid / Compute Canada) May 24, 2016 28 / 36

Intro Tools Graphs/layouts Selection Statistics

Custom layouts

Now let’s offset each node in the z-direction by a function of its degree:

$ d i f f dgmFlat . py dgmOffset . py
12 ,13 d11
< xyz = [[pos [i] [0] , pos [i] [1] , 0] f o r i in pos]
15 a14 , 1 5
> xyz = [[pos [i] [0] , pos [i] [1] , (degree [i])∗∗0 . 5 / 5 . 7] f o r i in pos]

Run this with “python dgmOffset.py 5” and colour edges by degree.

(WestGrid / Compute Canada) May 24, 2016 29 / 36

Intro Tools Graphs/layouts Selection Statistics

Social network (florentineFamilies.py)

Let’s visualize nx.florentine_families_graph(). It returns a list of edges with
the nodes indexed by the family name. The function writeObjects() expects
integer ID indices instead – hence the loop below.

import networkx as nx
from writeNodesEdges import wr i te Ob j ec t s
H = nx . f l o r e n t i n e _ f a m i l i e s _ g r a p h ()
nodes = H. nodes ()

i n d e x e d g e s by t h e i r node IDs
edges = []
f o r edge in H. edges () :

edges . append ([nodes . index (edge [0]) , nodes . index (edge [1])])

r e t u r n a d i c t i o n a r y o f p o s i t i o n s k e y e d by node
pos = nx . spr ing_layout (H, dim=3 ,k=1)

c o n v e r t t o l i s t o f p o s i t i o n s (e a c h i s a l i s t)
xyz = [l i s t (pos [i]) f o r i in pos]

degree = H. degree (H. nodes ()) . values ()
wr i te Ob je c t s (xyz , edges=edges , s c a l a r =degree , name= ’ degree ’ ,

f i l e o u t = ’ network ’ , nodeLabel=nodes , power = 0 . 3 3 3)

Note: turn on the labels!
(WestGrid / Compute Canada) May 24, 2016 30 / 36

Intro Tools Graphs/layouts Selection Statistics

Highlighting individual nodes

Let’s highlight nodes ’Strozzi’, ’Tornabuoni’, ’Albizzi’ with colour.

$ diff florentineFamilies.py florentineFamilies2.py
17c17,20
< degree = H.degree(H.nodes()).values()

> degree = [1]*len(nodes)
> selection = [’Strozzi’, ’Tornabuoni’, ’Albizzi’]
> for i in selection:
> degree[nodes.index(i)] = 3

(WestGrid / Compute Canada) May 24, 2016 31 / 36

Intro Tools Graphs/layouts Selection Statistics

Highlighting individual nodes and edges

Now let’s try to highlight the selection and their edges.

⇒ That’s very easy: simply colour the edges by node degree.

(WestGrid / Compute Canada) May 24, 2016 32 / 36

Intro Tools Graphs/layouts Selection Statistics

Highlighting individual nodes and their neighbours

Let’s highlight neighbours of the selected nodes.

$ d i f f f l o r e n t i n e F a m i l i e s 2 . py f l o r e n t i n e F a m i l i e s 3 . py
20 c20 , 2 3
< degree [nodes . index (i)] = 3
−−−
> degree [nodes . index (i)] = 3
> f o r j in l i s t (nx . a l l _ n e i g h b o r s (H, i)) :
> degree [nodes . index (j)] = max (2 . 5 , degree [nodes . index (j)])

(WestGrid / Compute Canada) May 24, 2016 33 / 36

Intro Tools Graphs/layouts Selection Statistics

Eigenvector centrality (dgmCentrality.py)

Let’s compute and visualize eigenvector centrality in the 5th-deneration
Dorogovtsev-Goltsev-Mendes graph with our custom 3D layout.
import networkx as nx
from f o r c e a t l a s import f o r c e a t l a s 2 _ l a y o u t
from writeNodesEdges import wr i te Ob j ec t s
H = nx . dorogovtsev_goltsev_mendes_graph (5)
pos = f o r c e a t l a s 2 _ l a y o u t (H, i t e r a t i o n s =100 , kr =0 .001 , dim=2)
p r i n t nx . number_of_nodes (H) , ’ nodes and ’ , nx . number_of_edges (H) , ’ edges ’
degree = H. degree (H. nodes ()) . values ()
xyz = [[pos [i] [0] , pos [i] [1] , (degree [i])∗∗0 . 5 / 5 . 7] f o r i in pos]

compute and p r i n t e i g e n v e c t o r c e n t r a l i t y
ec = nx . e i g e n v e c t o r _ c e n t r a l i t y (H) # d i c t i o n a r y o f nodes with EC as t h e v a l u e
e c L i s t = [ec [i] f o r i in ec]
p r i n t ’ degree = ’ , degree
p r i n t ’ e igenvec tor c e n t r a l i t y = ’ , e c L i s t
p r i n t ’min/max = ’ , min (e c L i s t) , max(e c L i s t)

wr i te Ob je c t s (xyz , edges=H. edges () ,
s c a l a r =degree , name= ’ degree ’ , power =0 .333 ,
s c a l a r 2 =e c L i s t , name2= ’ e igenvec tor c e n t r a l i t y ’ , power2 =0 .333 ,
f i l e o u t = ’ network ’)

• Run “python dgmCentrality.py” and load into ParaView by hand
• Colour by degree, size by eigenvector centrality

(WestGrid / Compute Canada) May 24, 2016 34 / 36

Intro Tools Graphs/layouts Selection Statistics

Other statistics in NetworkX

• Various centrality measures: degree, closeness, betweenness,
current-flow closeness, current-flow betweenness, eigenvector,
communicability, load, dispersion – see
https://networkx.readthedocs.org/en/stable/reference/
algorithms.centrality.html

• Several hundred built-in algorithms for various calculations – see
https://networkx.readthedocs.org/en/stable/reference/
algorithms.html

(WestGrid / Compute Canada) May 24, 2016 35 / 36

https://networkx.readthedocs.org/en/stable/reference/algorithms.centrality.html
https://networkx.readthedocs.org/en/stable/reference/algorithms.centrality.html
https://networkx.readthedocs.org/en/stable/reference/algorithms.html
https://networkx.readthedocs.org/en/stable/reference/algorithms.html

Intro Tools Graphs/layouts Selection Statistics

Questions?

(WestGrid / Compute Canada) May 24, 2016 36 / 36

	Intro
	Tools
	Graphs/layouts
	Selection
	Statistics

