Anaconda/en: Difference between revisions
Jump to navigation
Jump to search
(Updating to match new version of source page) |
No edit summary |
||
Line 1: | Line 1: | ||
<languages /> | <languages /> | ||
[[Category:Software]] | [[Category:Software]] | ||
'''Attention:''' While Conda works well in a desktop environment, it tends to create more problems than it solves on a cluster. For example, Conda very often installs software (compilers, scientific libraries etc.) which is already available on the Compute Canada clusters in the form of modules but with a far from ideal configuration. With the installation of all of this additional software by Conda, you also risk exceeding the quota on the number of files in your home directory. | |||
'''Attention:''' While Conda works well in a desktop environment, it tends to create more problems than it solves on a cluster. | |||
Pour ces raisons, on exige que les usagers se tournent vers des outils comme un environnement virtuel ou des paquets binaires (Python wheels), qui sont documentés sur la page [[Python]], ou bien l'usage de [[Singularity]] et une image Docker. | Pour ces raisons, on exige que les usagers se tournent vers des outils comme un environnement virtuel ou des paquets binaires (Python wheels), qui sont documentés sur la page [[Python]], ou bien l'usage de [[Singularity]] et une image Docker. |
Revision as of 16:34, 18 February 2020
Attention: While Conda works well in a desktop environment, it tends to create more problems than it solves on a cluster. For example, Conda very often installs software (compilers, scientific libraries etc.) which is already available on the Compute Canada clusters in the form of modules but with a far from ideal configuration. With the installation of all of this additional software by Conda, you also risk exceeding the quota on the number of files in your home directory.
Pour ces raisons, on exige que les usagers se tournent vers des outils comme un environnement virtuel ou des paquets binaires (Python wheels), qui sont documentés sur la page Python, ou bien l'usage de Singularity et une image Docker.