AlphaFold: Difference between revisions

From Alliance Doc
Jump to navigation Jump to search
m (move Category tag outside of translated area of the page)
 
(21 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<languages />
<languages />
[[Category:Software]]
<translate>
<translate>
<!--T:1-->
<!--T:1-->
[https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology AlphaFold]
[https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology AlphaFold]
is a machine-learning model for the prediction of protein folding.  
is a machine learning model for the prediction of protein folding.  


<!--T:2-->
<!--T:2-->
Line 10: Line 12:
<!--T:3-->
<!--T:3-->
Source code and documentation for AlphaFold can be found at their [https://github.com/deepmind/alphafold GitHub page].
Source code and documentation for AlphaFold can be found at their [https://github.com/deepmind/alphafold GitHub page].
Any publication that discloses findings arising from using this source code or the model parameters should [https://github.com/deepmind/alphafold#citing-this-work cite] the [https://doi.org/10.1038/s41586-021-03819-2 AlphaFold paper].
Any publication that discloses findings arising from use of this source code or the model parameters should [https://github.com/deepmind/alphafold#citing-this-work cite] the [https://doi.org/10.1038/s41586-021-03819-2 AlphaFold paper].


== Available versions == <!--T:5-->
== Available versions == <!--T:5-->
Line 33: Line 35:
<!--T:7-->
<!--T:7-->
1. Load AlphaFold dependencies.
1. Load AlphaFold dependencies.
{{Command|module load gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8
{{Command|module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8
}}
}}
As of July 2022, only Python 3.7 and 3.8 are supported.
As of July 2022, only Python 3.7 and 3.8 are supported.
Line 73: Line 75:


<!--T:65-->
<!--T:65-->
A copy of the databases is available in
The databases are available in
<code>/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2023_07/</code>.
<code>/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/</code>.


<!--T:63-->
<!--T:63-->
AlphaFold databases on CVMFS undergo yearly updates. In January 2024, the database was updated and is accessible in folder <code>2024_01</code>.
{{Command
{{Command
|prompt=(alphafold_env) [name@server ~]
|prompt=(alphafold_env) [name@server ~]
|export DOWNLOAD_DIR{{=}}/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2023_07/
|export DOWNLOAD_DIR{{=}}/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2024_01/
}}
}}
<!--T:64-->
Please note that the alphafold databases on cvmfs will undergo yearly updates as required. At present, the existing database is from July 2023.


<!--T:66-->
<!--T:66-->
The user can also choose to download the databases locally into their <code>$SCRATCH</code> directory.
You can also choose to download the databases locally into your <code>$SCRATCH</code> directory.


<!--T:12-->
<!--T:12-->
<b>Important:</b> The databases must live in the <code>$SCRATCH</code>.
<b>Important:</b> The databases must live in the <code>$SCRATCH</code> directory.


<!--T:13-->
<!--T:13-->
Line 109: Line 109:


<!--T:15-->
<!--T:15-->
Note that this step <b>cannot</b> be done from a compute node. It should be done on a data transfer node (DTN) on clusters that have them (see [[Transferring data]]). On clusters that have no DTN, use a login node instead. Since the download can take up to a full day, we suggest using a [[Prolonging_terminal_sessions#Terminal_multiplexers|terminal multiplexer]]. You may encounter a <code>Client_loop: send disconnect: Broken pipe</code> error message even if you are using a terminal multiplexer. See [[AlphaFold#Broken pipe error message|Troubleshooting]].
Note that this step <b>cannot</b> be done from a compute node. It should be done on a data transfer node (DTN) on clusters that have them (see [[Transferring data]]). On clusters that have no DTN, use a login node instead. Since the download can take up to a full day, we suggest using a [[Prolonging_terminal_sessions#Terminal_multiplexers|terminal multiplexer]]. You may encounter a <code>Client_loop: send disconnect: Broken pipe</code> error message. See [[AlphaFold#Broken pipe error message|Troubleshooting]] below.


<!--T:67-->
</tab>
</tab>


Line 211: Line 212:
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, Alpafold has no benefit to use more
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --mem=20G                # adjust this according to the memory you need
#SBATCH --mem=20G                # adjust this according to the memory you need


<!--T:49-->
<!--T:49-->
# Load modules dependencies
# Load modules dependencies.
module load gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8


<!--T:50-->
<!--T:50-->
Line 224: Line 225:


<!--T:51-->
<!--T:51-->
# Generate your virtual environment in $SLURM_TMPDIR
# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate
source ${SLURM_TMPDIR}/env/bin/activate


<!--T:52-->
<!--T:52-->
# Install alphafold and its dependencies
# Install AlphaFold and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt
pip install --no-index --requirement ~/alphafold-requirements.txt


<!--T:53-->
<!--T:53-->
# Edit with the proper arguments, run your commands.
# Edit with the proper arguments and run your commands.
# run_alphafold.py --help
# run_alphafold.py --help
run_alphafold.py \
run_alphafold.py \
Line 255: Line 256:
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --max_template_date=2021-12-31 \
   --max_template_date=2022-01-01 \
   --use_gpu_relax=False
   --use_gpu_relax=False
}}
}}
Line 272: Line 273:
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, Alpafold has no benefit to use more
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --gres=gpu:1              # a GPU helps to accelerate the inference part only
#SBATCH --gres=gpu:1              # a GPU helps to accelerate the inference part only
#SBATCH --mem=20G                # adjust this according to the memory you need
#SBATCH --mem=20G                # adjust this according to the memory you need


<!--T:56-->
<!--T:56-->
# Load modules dependencies
# Load modules dependencies.
module load gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8


<!--T:57-->
<!--T:57-->
Line 286: Line 287:


<!--T:58-->
<!--T:58-->
# Generate your virtual environment in $SLURM_TMPDIR
# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate
source ${SLURM_TMPDIR}/env/bin/activate


<!--T:59-->
<!--T:59-->
# Install alphafold and its dependencies
# Install AlphaFold and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt
pip install --no-index --requirement ~/alphafold-requirements.txt


<!--T:60-->
<!--T:60-->
# Edit with the proper arguments, run your commands.
# Edit with the proper arguments and run your commands.
# run_alphafold.py --help
# run_alphafold.py --help
run_alphafold.py \
run_alphafold.py \
Line 317: Line 318:
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --max_template_date=2021-12-31 \
   --max_template_date=2022-01-01 \
   --use_gpu_relax=True
   --use_gpu_relax=True
}}
}}
Line 334: Line 335:
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, Alpafold has no benefit to use more
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --mem=20G                # adjust this according to the memory you need
#SBATCH --mem=20G                # adjust this according to the memory you need


<!--T:21-->
<!--T:21-->
# Load modules dependencies
# Load modules dependencies.
module load gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8


<!--T:22-->
<!--T:22-->
Line 347: Line 348:


<!--T:23-->
<!--T:23-->
# Generate your virtual environment in $SLURM_TMPDIR
# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate
source ${SLURM_TMPDIR}/env/bin/activate


<!--T:24-->
<!--T:24-->
# Install alphafold and its dependencies
# Install AlphaFold and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt
pip install --no-index --requirement ~/alphafold-requirements.txt


<!--T:25-->
<!--T:25-->
# Edit with the proper arguments, run your commands.
# Edit with the proper arguments and run your commands.
# Note that the `--uniclust30_database_path` option below was renamed to
# Note that the `--uniclust30_database_path` option below was renamed to
# `--uniref30_database_path` in 2.3.
# `--uniref30_database_path` in 2.3.
Line 395: Line 396:
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --time=08:00:00          # adjust this to match the walltime of your job
#SBATCH --gres=gpu:1              # a GPU helps to accelerate the inference part only
#SBATCH --gres=gpu:1              # a GPU helps to accelerate the inference part only
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, Alpafold has no benefit to use more
#SBATCH --cpus-per-task=8        # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --mem=20G                # adjust this according to the memory you need
#SBATCH --mem=20G                # adjust this according to the memory you need


<!--T:28-->
<!--T:28-->
# Load modules dependencies
# Load modules dependencies.
module load gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8


<!--T:29-->
<!--T:29-->
Line 408: Line 409:


<!--T:30-->
<!--T:30-->
# Generate your virtual environment in $SLURM_TMPDIR
# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate
source ${SLURM_TMPDIR}/env/bin/activate


<!--T:31-->
<!--T:31-->
# Install alphafold and its dependencies
# Install AlphaFold  and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt
pip install --no-index --requirement ~/alphafold-requirements.txt


<!--T:32-->
<!--T:32-->
# Edit with the proper arguments, run your commands.
# Edit with the proper arguments and run your commands.
# Note that the `--uniclust30_database_path` option below was renamed to
# Note that the `--uniclust30_database_path` option below was renamed to
# `--uniref30_database_path` in 2.3.
# `--uniref30_database_path` in 2.3.
Line 451: Line 452:
}}
}}


== Troubleshooting ==
== Troubleshooting == <!--T:68-->
=== Broken pipe error message ===
=== Broken pipe error message ===
When downloading the database, you may encounter a <code>Client_loop: send disconnect: Broken pipe</code> error message even if you are using a terminal multiplexer. It is hard to find the exact cause that is responsible for this error message. It could be as simple as an unusually high number of users working on the login node giving less space for you to upload data.  
When downloading the database, you may encounter a <code>Client_loop: send disconnect: Broken pipe</code> error message. It is hard to find the exact cause for this error message. It could be as simple as an unusually high number of users working on the login node, leaving less space for you to upload data.
 
<!--T:69-->
*One solution is to use a [[Prolonging_terminal_sessions#Terminal_multiplexers|terminal multiplexer]]. Note that you could still encounter this error message but less are the chances.


*One solution would be to use the database that is already present on the clusters : <code>/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2023_07/</code>.
<!--T:70-->
*A second solution is to use the database that is already present on the cluster. <code>/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2023_07/</code>.


*Another option would be to download the full database in sections. To have access to the different download scripts, after loading the module and activated your virtual environment, you simply enter <code>download_</code> in your terminal and tap twice on the <code>tab</code> keyboard key to visualize all the scripts that are available. You can manually download sections of the database by using the available script as for instance : <code>download_pdb.sh</code>.  
<!--T:71-->
*Another option is to download the full database in sections. To have access to the different download scripts, after loading the module and activated your virtual environment, you simply enter <code>download_</code> in your terminal and tap twice on the <code>tab</code> keyboard key to visualize all the scripts that are available. You can manually download sections of the database by using the available script, as for instance <code>download_pdb.sh</code>.  


</translate>
</translate>

Latest revision as of 12:47, 1 May 2024

Other languages:

AlphaFold is a machine learning model for the prediction of protein folding.

This page discusses how to use AlphaFold v2.0, the version that was entered in CASP14 and published in Nature.

Source code and documentation for AlphaFold can be found at their GitHub page. Any publication that discloses findings arising from use of this source code or the model parameters should cite the AlphaFold paper.

Available versions[edit]

AlphaFold is available on our clusters as prebuilt Python packages (wheels). You can list available versions with avail_wheels.

Question.png
[name@server ~]$ avail_wheels alphafold --all-versions
name       version    python    arch
---------  ---------  --------  -------
alphafold  2.3.1      py3       generic
alphafold  2.3.0      py3       generic
alphafold  2.2.4      py3       generic
alphafold  2.2.3      py3       generic
alphafold  2.2.2      py3       generic
alphafold  2.2.1      py3       generic
alphafold  2.1.1      py3       generic
alphafold  2.0.0      py3       generic

Installing AlphaFold in a Python virtual environment[edit]

1. Load AlphaFold dependencies.

Question.png
[name@server ~]$ module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8

As of July 2022, only Python 3.7 and 3.8 are supported.


2. Create and activate a Python virtual environment.

[name@server ~]$ virtualenv --no-download ~/alphafold_env
[name@server ~]$ source ~/alphafold_env/bin/activate


3. Install a specific version of AlphaFold and its Python dependencies.

(alphafold_env) [name@server ~] pip install --no-index --upgrade pip
(alphafold_env) [name@server ~] pip install --no-index alphafold==X.Y.Z

where X.Y.Z is the exact desired version, for instance 2.2.4. You can omit to specify the version in order to install the latest one available from the wheelhouse.

4. Validate it.

Question.png
(alphafold_env) [name@server ~] run_alphafold.py --help

5. Freeze the environment and requirements set.

Question.png
(alphafold_env) [name@server ~] pip freeze > ~/alphafold-requirements.txt

Databases[edit]

Note that AlphaFold requires a set of databases.

The databases are available in /cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/.

AlphaFold databases on CVMFS undergo yearly updates. In January 2024, the database was updated and is accessible in folder 2024_01.

Question.png
(alphafold_env) [name@server ~] export DOWNLOAD_DIR=/cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2024_01/

You can also choose to download the databases locally into your $SCRATCH directory.

Important: The databases must live in the $SCRATCH directory.

1. From a DTN or login node, create the data folder.

(alphafold_env) [name@server ~] export DOWNLOAD_DIR=$SCRATCH/alphafold/data
(alphafold_env) [name@server ~] mkdir -p $DOWNLOAD_DIR


2. With your modules loaded and virtual environment activated, you can download the data.

Question.png
(alphafold_env) [name@server ~] download_all_data.sh $DOWNLOAD_DIR

Note that this step cannot be done from a compute node. It should be done on a data transfer node (DTN) on clusters that have them (see Transferring data). On clusters that have no DTN, use a login node instead. Since the download can take up to a full day, we suggest using a terminal multiplexer. You may encounter a Client_loop: send disconnect: Broken pipe error message. See Troubleshooting below.

1. Set DOWNLOAD_DIR.

Question.png
(alphafold_env) [name@server ~] export DOWNLOAD_DIR=/datashare/alphafold


Afterwards, the structure of your data should be similar to

Question.png
(alphafold_env) [name@server ~] tree -d $DOWNLOAD_DIR
$DOWNLOAD_DIR/                             # ~ 2.6 TB (total)
    bfd/                                   # ~ 1.8 TB
        # 6 files
    mgnify/                                # ~ 120 GB
        mgy_clusters.fa
    params/                                # ~ 5.3 GB
        # LICENSE
        # 15 models
        # 16 files (total)
    pdb70/                                 # ~ 56 GB
        # 9 files
    pdb_mmcif/                             # ~ 246 GB
        mmcif_files/
            # 202,764 files
        obsolete.dat
    pdb_seqres/                            # ~ 237 MB
        pdb_seqres.txt
    uniprot/                               # ~ 111 GB
        uniprot.fasta
    uniref30/                              # ~ 206 GB
        # 7 files
    uniref90/                              # ~ 73 GB
        uniref90.fasta
Question.png
(alphafold_env) [name@server ~] tree -d $DOWNLOAD_DIR
$DOWNLOAD_DIR/                             # Total: ~ 2.2 TB (download: 428 GB)
    bfd/                                   # ~ 1.8 TB (download: 271.6 GB)
        # 6 files.
    mgnify/                                # ~ 64 GB (download: 32.9 GB)
        mgy_clusters.fa
    params/                                # ~ 3.5 GB (download: 3.5 GB)
        # 5 CASP14 models,
        # 5 pTM models,
        # LICENSE,
        # = 11 files.
    pdb70/                                 # ~ 56 GB (download: 19.5 GB)
        # 9 files.
    pdb_mmcif/                             # ~ 206 GB (download: 46 GB)
        mmcif_files/
            # About 180,000 .cif files.
        obsolete.dat
    uniclust30/                            # ~ 87 GB (download: 24.9 GB)
        uniclust30_2018_08/
            # 13 files.
    uniref90/                              # ~ 59 GB (download: 29.7 GB)
        uniref90.fasta

Running AlphaFold[edit]

Performance

You can request at most 8 CPU cores when running AlphaFold because it is hardcoded to not use more and does not benefit from using more.



Edit one of following submission scripts according to your needs.

File : alphafold-2.3-cpu.sh

#!/bin/bash

#SBATCH --job-name=alphafold_run
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00           # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=8         # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --mem=20G                 # adjust this according to the memory you need

# Load modules dependencies.
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8

DOWNLOAD_DIR=$SCRATCH/alphafold/data   # set the appropriate path to your downloaded data
INPUT_DIR=$SCRATCH/alphafold/input     # set the appropriate path to your input data
OUTPUT_DIR=${SCRATCH}/alphafold/output # set the appropriate path to your output data

# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate

# Install AlphaFold and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt

# Edit with the proper arguments and run your commands.
# run_alphafold.py --help
run_alphafold.py \
   --fasta_paths=${INPUT_DIR}/YourSequence.fasta,${INPUT_DIR}/AnotherSequence.fasta \
   --output_dir=${OUTPUT_DIR} \
   --data_dir=${DOWNLOAD_DIR} \
   --db_preset=full_dbs \
   --model_preset=multimer \
   --bfd_database_path=${DOWNLOAD_DIR}/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
   --mgnify_database_path=${DOWNLOAD_DIR}/mgnify/mgy_clusters_2022_05.fa \
   --pdb70_database_path=${DOWNLOAD_DIR}/pdb70/pdb70 \
   --template_mmcif_dir=${DOWNLOAD_DIR}/pdb_mmcif/mmcif_files \
   --obsolete_pdbs_path=${DOWNLOAD_DIR}/pdb_mmcif/obsolete.dat \
   --pdb_seqres_database_path=${DOWNLOAD_DIR}/pdb_seqres/pdb_seqres.txt \
   --uniprot_database_path=${DOWNLOAD_DIR}/uniprot/uniprot.fasta \
   --uniref30_database_path=${DOWNLOAD_DIR}/uniref30/UniRef30_2021_03 \
   --uniref90_database_path=${DOWNLOAD_DIR}/uniref90/uniref90.fasta \
   --hhblits_binary_path=${EBROOTHHMINSUITE}/bin/hhblits \
   --hhsearch_binary_path=${EBROOTHHMINSUITE}/bin/hhsearch \
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --max_template_date=2022-01-01 \
   --use_gpu_relax=False


File : alphafold-2.3-gpu.sh

#!/bin/bash

#SBATCH --job-name=alphafold_run
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00           # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=8         # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --gres=gpu:1              # a GPU helps to accelerate the inference part only
#SBATCH --mem=20G                 # adjust this according to the memory you need

# Load modules dependencies.
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8

DOWNLOAD_DIR=$SCRATCH/alphafold/data   # set the appropriate path to your downloaded data
INPUT_DIR=$SCRATCH/alphafold/input     # set the appropriate path to your input data
OUTPUT_DIR=${SCRATCH}/alphafold/output # set the appropriate path to your output data

# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate

# Install AlphaFold and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt

# Edit with the proper arguments and run your commands.
# run_alphafold.py --help
run_alphafold.py \
   --fasta_paths=${INPUT_DIR}/YourSequence.fasta,${INPUT_DIR}/AnotherSequence.fasta \
   --output_dir=${OUTPUT_DIR} \
   --data_dir=${DOWNLOAD_DIR} \
   --db_preset=full_dbs \
   --model_preset=multimer \
   --bfd_database_path=${DOWNLOAD_DIR}/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
   --mgnify_database_path=${DOWNLOAD_DIR}/mgnify/mgy_clusters_2022_05.fa \
   --pdb70_database_path=${DOWNLOAD_DIR}/pdb70/pdb70 \
   --template_mmcif_dir=${DOWNLOAD_DIR}/pdb_mmcif/mmcif_files \
   --obsolete_pdbs_path=${DOWNLOAD_DIR}/pdb_mmcif/obsolete.dat \
   --pdb_seqres_database_path=${DOWNLOAD_DIR}/pdb_seqres/pdb_seqres.txt \
   --uniprot_database_path=${DOWNLOAD_DIR}/uniprot/uniprot.fasta \
   --uniref30_database_path=${DOWNLOAD_DIR}/uniref30/UniRef30_2021_03 \
   --uniref90_database_path=${DOWNLOAD_DIR}/uniref90/uniref90.fasta \
   --hhblits_binary_path=${EBROOTHHMINSUITE}/bin/hhblits \
   --hhsearch_binary_path=${EBROOTHHMINSUITE}/bin/hhsearch \
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --max_template_date=2022-01-01 \
   --use_gpu_relax=True


File : alphafold-cpu.sh

#!/bin/bash

#SBATCH --job-name=alphafold_run
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00           # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=8         # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --mem=20G                 # adjust this according to the memory you need

# Load modules dependencies.
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8

DOWNLOAD_DIR=$SCRATCH/alphafold/data   # set the appropriate path to your downloaded data
INPUT_DIR=$SCRATCH/alphafold/input     # set the appropriate path to your input data
OUTPUT_DIR=${SCRATCH}/alphafold/output # set the appropriate path to your output data

# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate

# Install AlphaFold and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt

# Edit with the proper arguments and run your commands.
# Note that the `--uniclust30_database_path` option below was renamed to
# `--uniref30_database_path` in 2.3.
# run_alphafold.py --help
run_alphafold.py \
   --fasta_paths=${INPUT_DIR}/YourSequence.fasta,${INPUT_DIR}/AnotherSequence.fasta \
   --output_dir=${OUTPUT_DIR} \
   --data_dir=${DOWNLOAD_DIR} \
   --model_preset=monomer_casp14 \
   --bfd_database_path=${DOWNLOAD_DIR}/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
   --mgnify_database_path=${DOWNLOAD_DIR}/mgnify/mgy_clusters_2018_12.fa \
   --pdb70_database_path=${DOWNLOAD_DIR}/pdb70/pdb70 \
   --template_mmcif_dir=${DOWNLOAD_DIR}/pdb_mmcif/mmcif_files \
   --obsolete_pdbs_path=${DOWNLOAD_DIR}/pdb_mmcif/obsolete.dat \
   --uniclust30_database_path=${DOWNLOAD_DIR}/uniclust30/uniclust30_2018_08/uniclust30_2018_08  \
   --uniref90_database_path=${DOWNLOAD_DIR}/uniref90/uniref90.fasta  \
   --hhblits_binary_path=${EBROOTHHMINSUITE}/bin/hhblits \
   --hhsearch_binary_path=${EBROOTHHMINSUITE}/bin/hhsearch \
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --max_template_date=2020-05-14 \
   --use_gpu_relax=False


File : alphafold-gpu.sh

#!/bin/bash

#SBATCH --job-name=alphafold_run
#SBATCH --account=def-someprof    # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00           # adjust this to match the walltime of your job
#SBATCH --gres=gpu:1              # a GPU helps to accelerate the inference part only
#SBATCH --cpus-per-task=8         # a MAXIMUM of 8 core, AlphaFold has no benefit to use more
#SBATCH --mem=20G                 # adjust this according to the memory you need

# Load modules dependencies.
module load StdEnv/2020 gcc/9.3.0 openmpi/4.0.3 cuda/11.4 cudnn/8.2.0 kalign/2.03 hmmer/3.2.1 openmm-alphafold/7.5.1 hh-suite/3.3.0 python/3.8

DOWNLOAD_DIR=$SCRATCH/alphafold/data   # set the appropriate path to your downloaded data
INPUT_DIR=$SCRATCH/alphafold/input     # set the appropriate path to your input data
OUTPUT_DIR=${SCRATCH}/alphafold/output # set the appropriate path to your output data

# Generate your virtual environment in $SLURM_TMPDIR.
virtualenv --no-download ${SLURM_TMPDIR}/env
source ${SLURM_TMPDIR}/env/bin/activate

# Install AlphaFold  and its dependencies.
pip install --no-index --upgrade pip
pip install --no-index --requirement ~/alphafold-requirements.txt

# Edit with the proper arguments and run your commands.
# Note that the `--uniclust30_database_path` option below was renamed to
# `--uniref30_database_path` in 2.3.
# run_alphafold.py --help
run_alphafold.py \
   --fasta_paths=${INPUT_DIR}/YourSequence.fasta,${INPUT_DIR}/AnotherSequence.fasta \
   --output_dir=${OUTPUT_DIR} \
   --data_dir=${DOWNLOAD_DIR} \
   --model_preset=monomer_casp14 \
   --bfd_database_path=${DOWNLOAD_DIR}/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
   --mgnify_database_path=${DOWNLOAD_DIR}/mgnify/mgy_clusters_2018_12.fa \
   --pdb70_database_path=${DOWNLOAD_DIR}/pdb70/pdb70 \
   --template_mmcif_dir=${DOWNLOAD_DIR}/pdb_mmcif/mmcif_files \
   --obsolete_pdbs_path=${DOWNLOAD_DIR}/pdb_mmcif/obsolete.dat \
   --uniclust30_database_path=${DOWNLOAD_DIR}/uniclust30/uniclust30_2018_08/uniclust30_2018_08  \
   --uniref90_database_path=${DOWNLOAD_DIR}/uniref90/uniref90.fasta  \
   --hhblits_binary_path=${EBROOTHHMINSUITE}/bin/hhblits \
   --hhsearch_binary_path=${EBROOTHHMINSUITE}/bin/hhsearch \
   --jackhmmer_binary_path=${EBROOTHMMER}/bin/jackhmmer \
   --kalign_binary_path=${EBROOTKALIGN}/bin/kalign \
   --max_template_date=2020-05-14 \
   --use_gpu_relax=True


Then, submit the job to the scheduler.

Question.png
(alphafold_env) [name@server ~] sbatch --job-name alphafold-X alphafold-gpu.sh

Troubleshooting[edit]

Broken pipe error message[edit]

When downloading the database, you may encounter a Client_loop: send disconnect: Broken pipe error message. It is hard to find the exact cause for this error message. It could be as simple as an unusually high number of users working on the login node, leaving less space for you to upload data.

  • One solution is to use a terminal multiplexer. Note that you could still encounter this error message but less are the chances.
  • A second solution is to use the database that is already present on the cluster. /cvmfs/bio.data.computecanada.ca/content/databases/Core/alphafold2_dbs/2023_07/.
  • Another option is to download the full database in sections. To have access to the different download scripts, after loading the module and activated your virtual environment, you simply enter download_ in your terminal and tap twice on the tab keyboard key to visualize all the scripts that are available. You can manually download sections of the database by using the available script, as for instance download_pdb.sh.