Niagara Quickstart: Difference between revisions
mNo edit summary |
No edit summary |
||
(148 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
<languages /> | <languages /> | ||
<translate> | <translate> | ||
= | |||
=Specifications= <!--T:1--> | |||
<!--T:2--> | <!--T:2--> | ||
The Niagara cluster is a large cluster of 1548 Lenovo SD350 servers each with 40 Intel "Skylake" cores at 2.4 GHz. | |||
The peak performance of the cluster is 3.02 PFlops delivered / 4.75 PFlops theoretical. It is the 53rd fastest supercomputer on the [https://www.top500.org/list/2018/06/?page=1 TOP500 list of June 2018]. | |||
= | <!--T:104--> | ||
Each node of the cluster has 188 GiB / 202 GB RAM per node (at least 4 GiB/core for user jobs). Being designed for large parallel workloads, it has a fast interconnect consisting of EDR InfiniBand in a Dragonfly+ topology with Adaptive Routing. The compute nodes are accessed through a queueing system that allows jobs with a minimum of 15 minutes and a maximum of 24 hours and favours large jobs. | |||
<!--T:105--> | |||
See the [https://support.scinet.utoronto.ca/education/go.php/370/content.php/cid/1383/ Intro to Niagara] recording | |||
<!--T:106--> | |||
More detailed hardware characteristics of the Niagara supercomputer can be found [[Niagara|on this page]]. | |||
= Getting started on Niagara = <!--T:209--> | |||
<!--T:4--> | <!--T:4--> | ||
Access to Niagara is | Access to Niagara is not enabled automatically for everyone with an Alliance account, but anyone with an active Alliance account can get their access enabled. | ||
If you have an active Alliance account but you do not have access to Niagara yet (e.g. because you are a new user and belong to a group whose primary PI does not have an allocation as granted in the annual [https://www.computecanada.ca/research-portal/accessing-resources/resource-allocation-competitions Alliance RAC]), go to the [https://ccdb.computecanada.ca/services/opt_in opt-in page on the CCDB site]. After clicking the "Join" button on that page, it usually takes only one or two business days for access to be granted. | |||
<!--T:210--> | |||
Please read this document carefully. The [https://docs.scinet.utoronto.ca/index.php/FAQ FAQ] is also a useful resource. If at any time you require assistance, or if something is unclear, please do not hesitate to [mailto:niagara@computecanada.ca contact us]. | |||
== Logging in == <!--T:3--> | |||
Niagara runs CentOS 7, which is a type of Linux. You will need to be familiar with Linux systems to work on Niagara. If you are not it will be worth your time to review | |||
the [[Linux introduction]] or to attend a local "Linux Shell" workshop. | |||
<!--T:5--> | <!--T:5--> | ||
As with all SciNet and Alliance compute systems, access to Niagara is done via ssh (secure shell) only. As of January 22 2022, authentication is only allowed via SSH keys. Please refer to [[SSH_Keys|this page]] to generate your SSH key pair and make sure you use them securely. | |||
<!--T:228--> | |||
Open a terminal window (e.g. [[Connecting with PuTTY|PuTTY]] on Windows or [[Connecting with MobaXTerm|MobaXTerm]]), then ssh into the Niagara login nodes with your CC credentials: | |||
<!--T:6--> | <!--T:6--> | ||
<source lang="bash"> | <source lang="bash"> | ||
$ ssh -Y MYCCUSERNAME@niagara.scinet.utoronto.ca</source> | $ ssh -i /path/to/ssh_private_key -Y MYCCUSERNAME@niagara.scinet.utoronto.ca</source> | ||
<!--T:7--> | <!--T:7--> | ||
Line 22: | Line 45: | ||
<!--T:8--> | <!--T:8--> | ||
<source lang="bash">$ ssh -Y MYCCUSERNAME@niagara.computecanada.ca</source> | <source lang="bash">$ ssh -i /path/to/ssh_private_key -Y MYCCUSERNAME@niagara.computecanada.ca</source> | ||
<!--T:9--> | <!--T:9--> | ||
Line 28: | Line 51: | ||
<!--T:10--> | <!--T:10--> | ||
These login nodes are not part of the Niagara compute cluster, but have the same architecture, operating system, and software stack | These login nodes are not part of the Niagara compute cluster, but have the same architecture, operating system, and software stack. | ||
<!--T:11--> | <!--T:11--> | ||
The optional <code>-Y</code> | The optional <code>-Y</code> is needed to open windows from the Niagara command-line onto your local X server. | ||
<!--T:12--> | <!--T:12--> | ||
To run on Niagara's compute nodes, you must submit a batch job | To run on Niagara's compute nodes, you must submit a batch job. | ||
<!--T: | <!--T:107--> | ||
If you cannot log in, be sure first to check the [https://docs.scinet.utoronto.ca System Status] on this site's front page. | |||
<!--T: | == Your various directories == <!--T:28--> | ||
By virtue of your access to Niagara you are granted storage space on the system. There are several directories available to you, each indicated by an associated environment variable | |||
=== home and scratch === <!--T:29--> | |||
== | |||
= | |||
<!--T:30--> | <!--T:30--> | ||
You have a home and scratch directory on the system, whose locations are of the form | |||
<!--T:31--> | <!--T:31--> | ||
Line 104: | Line 77: | ||
<!--T:33--> | <!--T:33--> | ||
For example: | where groupname is the name of your PI's group, and myccusername is your CC username. For example: | ||
</translate> | </translate> | ||
<source lang="bash">nia-login07:~$ pwd | <source lang="bash">nia-login07:~$ pwd | ||
/home/s/scinet/rzon | /home/s/scinet/rzon | ||
nia-login07:~$ cd $SCRATCH | nia-login07:~$ cd $SCRATCH | ||
nia-login07:rzon$ pwd | nia-login07:rzon$ pwd | ||
/scratch/s/scinet/rzon</source> | /scratch/s/scinet/rzon</source> | ||
<translate> | <translate> | ||
== | |||
<!--T:211--> | |||
NOTE: home is read-only on compute nodes. | |||
=== project and archive === <!--T:34--> | |||
<!--T:35--> | <!--T:35--> | ||
Users from groups with | Users from groups with [https://www.computecanada.ca/research-portal/accessing-resources/resource-allocation-competitions RAC storage allocation] will also have a project and possibly an archive directory. | ||
<!--T:36--> | <!--T:36--> | ||
<code>$PROJECT=/project/g/groupname/myccusername</code> | <code>$PROJECT=/project/g/groupname/myccusername</code> | ||
<!--T:108--> | |||
<code>$ARCHIVE=/archive/g/groupname/myccusername</code> | |||
<!--T:109--> | |||
NOTE: Currently archive space is available only via [https://docs.scinet.utoronto.ca/index.php/HPSS HPSS], and is not accessible on the Niagara login, compute, or datamover nodes. | |||
<!--T:37--> | <!--T:37--> | ||
Line 126: | Line 107: | ||
<!--T:38--> | <!--T:38--> | ||
When writing your scripts, use the environment variables (<tt>$HOME</tt>, <tt>$SCRATCH</tt>, <tt>$PROJECT</tt>, <tt>$ARCHIVE</tt>) instead of the actual paths! The paths may change in the future. | |||
=== Storage and quotas === <!--T:39--> | |||
<!--T:212--> | |||
You should familiarize yourself with the [[Data_management_at_Niagara#Purpose_of_each_file_system | various file systems]], what purpose they serve, and how to properly use them. This table summarizes the various file systems. See the [[Data_management_at_Niagara | Data management at Niagara]] page for more details. | |||
<!--T:40--> | <!--T:40--> | ||
{| class="wikitable" | {| class="wikitable" | ||
! location | ! location | ||
! quota | !colspan="2"| quota | ||
!align="right"| block size | !align="right"| block size | ||
! expiration time | ! expiration time | ||
! backed up | ! backed up | ||
! on login | ! on login nodes | ||
! on compute | ! on compute nodes | ||
|- | |- | ||
| $HOME | | $HOME | ||
| 100 GB | |colspan="2"| 100 GB per user | ||
|align="right"| 1 MB | |align="right"| 1 MB | ||
| | | | ||
Line 148: | Line 132: | ||
| read-only | | read-only | ||
|- | |- | ||
| $SCRATCH | |rowspan="2"| $SCRATCH | ||
| 25 TB | |colspan="2"| 25 TB per user | ||
|align="right"| 16 MB | |align="right" rowspan="2" | 16 MB | ||
| 2 months | |rowspan="2"| 2 months | ||
| no | |rowspan="2"| no | ||
| yes | |rowspan="2"| yes | ||
| yes | |rowspan="2"| yes | ||
|- | |||
|align="right"|50-500TB per group | |||
|align="right"|[[Data_management#Quotas_and_purging | depending on group size]] | |||
|- | |- | ||
| $PROJECT | | $PROJECT | ||
| by group allocation | |colspan="2"| by group allocation | ||
|align="right"| 16 MB | |align="right"| 16 MB | ||
| | | | ||
Line 165: | Line 152: | ||
|- | |- | ||
| $ARCHIVE | | $ARCHIVE | ||
| by group allocation | |colspan="2"| by group allocation | ||
|align="right"| | |align="right"| | ||
| | | | ||
Line 173: | Line 160: | ||
|- | |- | ||
| $BBUFFER | | $BBUFFER | ||
| | |colspan="2"| 10 TB per user | ||
|align="right"| 1 MB | |align="right"| 1 MB | ||
| very short | | very short | ||
| no | | no | ||
| | | yes | ||
| | | yes | ||
|} | |} | ||
<!--T: | === Moving data to Niagara === <!--T:213--> | ||
<!--T:214--> | |||
If you need to move data to Niagara for analysis, or when you need to move data off of Niagara, use the following guidelines: | |||
* If your data is less than 10GB, move the data using the login nodes. | |||
* If your data is greater than 10GB, move the data using the datamover nodes nia-datamover1.scinet.utoronto.ca and nia-datamover2.scinet.utoronto.ca . | |||
<!--T: | <!--T:215--> | ||
Details of how to use the datamover nodes can be found on the [[Data_management_at_Niagara#Moving_data | Data management at Niagara]] page. | |||
<!--T: | = Loading software modules = <!--T:48--> | ||
<!--T: | <!--T:216--> | ||
You have two options for running code on Niagara: use existing software, or [[Niagara_Quickstart#Compiling_on_Niagara:_Example | compile your own]]. This section focuses on the former. | |||
<!--T:50--> | <!--T:50--> | ||
Other than essentials, all installed software is made available [[ | Other than essentials, all installed software is made available [[Using_modules | using module commands]]. These modules set environment variables (PATH, etc.), allowing multiple, conflicting versions of a given package to be available. A detailed explanation of the module system can be [[Using_modules | found on the modules page]]. | ||
<!--T:217--> | |||
<!--T: | |||
Common module subcommands are: | Common module subcommands are: | ||
<li><code>module load <module-name></code>: use particular software</li> | <li><code>module load <module-name></code>: use particular software</li> | ||
Line 246: | Line 192: | ||
<li><code>module spider</code> (or <code>module spider <module-name></code>): list available software packages</li> | <li><code>module spider</code> (or <code>module spider <module-name></code>): list available software packages</li> | ||
<li><code>module avail</code>: list loadable software packages</li> | <li><code>module avail</code>: list loadable software packages</li> | ||
<li><code>module list</code>: list loaded modules</li></ | <li><code>module list</code>: list loaded modules</li> | ||
<!--T:218--> | |||
Along with modifying common environment variables, such as PATH, and LD_LIBRARY_PATH, these modules also create a SCINET_MODULENAME_ROOT environment variable, which can be used to access commonly needed software directories, such as /include and /lib. | |||
<!--T:219--> | |||
There are handy abbreviations for the module commands. <code>ml</code> is the same as <code>module list</code>, and <code>ml <module-name></code> is the same as <code>module load <module-name></code>. | |||
== Software stacks: NiaEnv and CCEnv == <!--T:220--> | |||
<!--T:53--> | <!--T:53--> | ||
On Niagara, there are | On Niagara, there are two available software stacks: | ||
<!--T:54--> | <!--T:54--> | ||
<ol style="list-style-type: decimal;"> | <ol style="list-style-type: decimal;"> | ||
<li><p>A [[ | <li><p>A [[Modules_specific_to_Niagara | Niagara software stack]] tuned and compiled for this machine. This stack is available by default, but if not, can be reloaded with</p> | ||
< | <code>module load NiaEnv</code></li> | ||
<li><p>The | <li><p>The standard [[Available software|Alliance software stack]] which is available on Alliance's other clusters (including [[Graham]], [[Cedar]], [[Narval]], and [[Beluga]]):</p> | ||
< | <code>module load CCEnv arch/avx512</code> | ||
<p> | <br>(without the <tt>arch/avx512</tt> module, you'd get the modules for a previous generation of CPUs) | ||
<p>Or, if you want the same default modules loaded as on Cedar, Graham, and Beluga, then do | |||
</p><p> | |||
<code>module load CCEnv arch/avx512 StdEnv/2018.3</code> | |||
</p> | |||
</li></ol> | |||
== Tips for loading software == <!--T:56--> | == Tips for loading software == <!--T:56--> | ||
<!--T:57--> | <!--T:57--> | ||
We advise '''''against''''' loading modules in your .bashrc | We advise '''''against''''' loading modules in your .bashrc.<br> This could lead to very confusing behaviour under certain circumstances. | ||
<!--T:155--> | |||
Our guidelines for .bashrc files can be found [https://docs.scinet.utoronto.ca/index.php/Bashrc_guidelines here] | |||
<!--T:156--> | |||
Instead, load modules by hand when needed, or by sourcing a separate script. | |||
<!--T:157--> | |||
Load run-specific modules inside your job submission script. | |||
<!--T:58--> | <!--T:58--> | ||
Short names give default versions; e.g. <code>intel</code> → <code>intel/2018.2</code>. It is usually better to be explicit about the versions, for future reproducibility. | Short names give default versions; e.g. <code>intel</code> → <code>intel/2018.2</code>. It is usually better to be explicit about the versions, for future reproducibility. | ||
<!--T:61--> | <!--T:61--> | ||
Line 286: | Line 241: | ||
Solve these dependencies by using <code>module spider</code>. | Solve these dependencies by using <code>module spider</code>. | ||
== | = Available compilers and interpreters = <!--T:221--> | ||
<!--T: | |||
<!--T:222--> | |||
* For most compiled software, one should use the Intel compilers (<tt>icc</tt> for C, <tt>icpc</tt> for C++, and <tt>ifort</tt> for Fortran). Loading an <tt>intel</tt> module makes these available. | |||
* The GNU compiler suite (<tt>gcc, g++, gfortran</tt>) is also available, if you load one of the <tt>gcc</tt> modules. | |||
* Open source interpreted, interactive software is also available: | |||
<!--T: | ** [[Python]] | ||
** [[R]] | |||
</ | ** Julia | ||
< | ** Octave | ||
Please visit the [[Python]] or [[R]] page for details on using these tools. For information on running MATLAB applications on Niagara, visit [[MATLAB| this page]]. | |||
</ | |||
= Using Commercial Software = <!--T:67--> | |||
<!--T:223--> | |||
May I use commercial software on Niagara? | |||
<!--T:68--> | <!--T:68--> | ||
* Possibly, but you have to bring your own license for it. | * Possibly, but you have to bring your own license for it. You can connect to an external license server using [https://docs.scinet.utoronto.ca/index.php/SSH_Tunneling ssh tunneling]. | ||
* SciNet and | * SciNet and Alliance have an extremely large and broad user base of thousands of users, so we cannot provide licenses for everyone's favorite software. | ||
* Thus, the only commercial software installed on Niagara is software that can benefit everyone: | * Thus, the only commercial software installed on Niagara is software that can benefit everyone: compilers, math libraries and debuggers. | ||
* That means no | * That means no [[MATLAB]], Gaussian, IDL, | ||
* Open source alternatives like Octave, Python, R are available. | * Open source alternatives like Octave, [[Python]], and [[R]] are available. | ||
* We are happy to help you to install commercial software for which you have a license. | * We are happy to help you to install commercial software for which you have a license. | ||
* In some cases, if you have a license, you can use software in the | * In some cases, if you have a license, you can use software in the Alliance stack. | ||
The list of commercial software which is installed on Niagara, for which you will need a license to use, can be found on the [https://docs.scinet.utoronto.ca/index.php/Commercial_software commercial software page]. | |||
= Compiling on Niagara: Example = <!--T:69--> | = Compiling on Niagara: Example = <!--T:69--> | ||
Line 379: | Line 296: | ||
Note: | Note: | ||
* The optimization flags <tt>-O3 -xHost</tt> allow the Intel compiler to use instructions specific to the architecture CPU that is present (instead of for more generic x86_64 CPUs). | * The optimization flags <tt>-O3 -xHost</tt> allow the Intel compiler to use instructions specific to the architecture CPU that is present (instead of for more generic x86_64 CPUs). | ||
* | * Linking with this library is easy when using the intel compiler, it just requires the <tt>-mkl</tt> flags. | ||
* If compiling with gcc, the optimization flags would be <tt>-O3 -march=native</tt>. For the way to link with the MKL, it is suggested to use the [https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor MKL link line advisor]. | * If compiling with gcc, the optimization flags would be <tt>-O3 -march=native</tt>. For the way to link with the MKL, it is suggested to use the [https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor MKL link line advisor]. | ||
Line 389: | Line 306: | ||
<!--T:74--> | <!--T:74--> | ||
<ul> | <ul> | ||
<li | <li>Small test jobs can be run on the login nodes. | ||
<p>Rule of thumb: couple of minutes, taking at most about 1-2GB of memory, couple of cores.</p></li> | <p>Rule of thumb: tests should run no more than a couple of minutes, taking at most about 1-2GB of memory, and use no more than a couple of cores.</p> | ||
<li><p>You can run | </li> | ||
<li><p>Short tests that do not fit on a login node, or for which you need a dedicated node, request an | <li> | ||
interactive debug job with the | <p>You can run the ddt debugger on the login nodes after <code>module load ddt</code>.</p> | ||
</li> | |||
<li> | |||
<p>Short tests that do not fit on a login node, or for which you need a dedicated node, request an interactive debug job with the debug command:</p> | |||
<source lang="bash">nia-login07:~$ debugjob N</source> | <source lang="bash">nia-login07:~$ debugjob N</source> | ||
where N is the number of nodes, If N=1, this gives an interactive session one 1 hour, when N=4 (the maximum), it | <p>where N is the number of nodes, If N=1, this gives an interactive session one 1 hour, when N=4 (the maximum), it gives you 30 minutes.</p><p> Finally, if your debugjob process takes more than 1 hour, you can request an interactive job from the regular queue using the salloc command. Note, however, that this may take some time to run, since it will be part of the regular queue, and will be run when the scheduler decides.</p> | ||
</li></ul> | <source lang="bash">nia-login07:~$ salloc --nodes N --time=M:00:00</source> | ||
<p>here N is again the number of nodes, and M is the number of hours you wish the job to run.</p> | |||
<p>If you need to use graphics while testing your code through salloc, e.g. when using a debugger such as DDT or DDD, you have the following options, please visit the | |||
[[Testing_With_Graphics | Testing with graphics]] page.</p> | |||
</li> | |||
</ul> | |||
= Submitting jobs = <!--T:75--> | = Submitting jobs = <!--T:75--> | ||
Line 407: | Line 329: | ||
<li><p>Niagara uses SLURM as its job scheduler.</p></li> | <li><p>Niagara uses SLURM as its job scheduler.</p></li> | ||
<li><p>You submit jobs from a login node by passing a script to the sbatch command:</p> | <li><p>You submit jobs from a login node by passing a script to the sbatch command:</p> | ||
<source lang="bash">nia-login07: | <source lang="bash">nia-login07:scratch$ sbatch jobscript.sh</source></li> | ||
<li><p>This puts the job in the queue. It will run on the compute nodes in due course.</p></li> | <li><p>This puts the job in the queue. It will run on the compute nodes in due course.</p></li> | ||
<li><p>Jobs will run under their group's RRG allocation, or, if the group has none, under a RAS allocation (previously called | <li><p>In most cases, you will want to submit from your $SCRATCH directory, so that the output of your compute job can be written out (as mentioned above, $HOME is read-only on the compute nodes).</p> | ||
<li><p>Jobs will run under their group's RRG allocation, or, if the group has none, under a RAS allocation (previously called 'default' allocation).</p></li> | |||
<li><p>Some example job scripts can be found below.</p></li> | |||
</ul> | |||
<!--T:77--> | <!--T:77--> | ||
Line 417: | Line 342: | ||
<ul> | <ul> | ||
<li><p>Scheduling is by node, so in multiples of 40-cores.</p></li> | <li><p>Scheduling is by node, so in multiples of 40-cores.</p></li> | ||
<li><p> | <li><p> Your job's maximum walltime is 24 hours.</p></li> | ||
<li><p>Jobs must write to your scratch or project directory (home is read-only on compute nodes).</p></li> | <li><p>Jobs must write to your scratch or project directory (home is read-only on compute nodes).</p></li> | ||
<li><p>Compute nodes have no internet access.</p> | <li><p>Compute nodes have no internet access.</p> | ||
<p> | <p>[[Data_management_at_Niagara#Moving_data | Move your data]] to Niagara before you submit your job.</p></li></ul> | ||
== Scheduling by | == Scheduling by node == <!--T:79--> | ||
On many systems that use SLURM, the scheduler will deduce from the specifications of the number of tasks and the number of cpus-per-node what resources should be allocated. On Niagara things are a bit different. | |||
<!--T:80--> | <!--T:80--> | ||
<ul> | <ul> | ||
<li><p>All job resource requests on Niagara are scheduled as a multiple of '''nodes'''.</p></li> | <li><p>All job resource requests on Niagara are scheduled as a multiple of '''nodes'''.</p></li> | ||
<li>The nodes that your jobs run on are exclusively yours. | <li>The nodes that your jobs run on are exclusively yours, for as long as the job is running on them. | ||
<ul> | <ul> | ||
<li>No other users are running anything on them.</li> | <li>No other users are running anything on them.</li> | ||
<li>You can ssh into them to see how things are going.</li></ul> | <li>You can ssh into them to see how things are going.</li></ul> | ||
</li> | </li> | ||
<li><p>Whatever your requests to the scheduler, it will always be translated into a multiple of nodes.</p></li> | <li><p>Whatever your requests to the scheduler, it will always be translated into a multiple of nodes allocated to your job.</p></li> | ||
<li><p>Memory requests to the scheduler are of no use. | <li><p>Memory requests to the scheduler are of no use. Your job always gets N x 202GB of RAM, where N is the number of nodes and 202GB is the amount of memory on the node.</p></li> | ||
<li><p>If you run serial jobs you must still use all 40 cores on the node. Visit the [https://docs.scinet.utoronto.ca/index.php/Running_Serial_Jobs_on_Niagara serial jobs] page for examples of how to do this.</p></li> | |||
<li><p> | <li><p>Since there are 40 cores per node, your job should use N x 40 cores. If you do not, we will contact you to help you optimize your workflow. Or you can [mailto:support@scinet.utoronto.ca contact us] to get assistance.</p></li></ul> | ||
<p> | |||
== | == Limits == <!--T:175--> | ||
<!--T: | <!--T:176--> | ||
There are limits to the size and duration of your jobs, the number of jobs you can run and the number of jobs you can have queued. It matters whether a user is part of a group with a [https://www.computecanada.ca/research-portal/accessing-resources/resource-allocation-competitions/ Resources for Research Group allocation] or not. It also matters in which 'partition' the jobs runs. 'Partitions' are SLURM-speak for use cases. You specify the partition with the <tt>-p</tt> parameter to <tt>sbatch</tt> or <tt>salloc</tt>, but if you do not specify one, your job will run in the <tt>compute</tt> partition, which is the most common case. | |||
<!--T: | <!--T:177--> | ||
{| class="wikitable" | |||
!Usage | |||
!Partition | |||
!Running jobs | |||
!Submitted jobs (incl. running) | |||
!Min. size of jobs | |||
!Max. size of jobs | |||
!Min. walltime | |||
!Max. walltime | |||
|- | |||
|Compute jobs with an allocation||compute || 50 || 1000 || 1 node (40 cores) || 1000 nodes (40000 cores)|| 15 minutes || 24 hours | |||
|- | |||
|Compute jobs without allocation ("default")||compute || 50 || 200 || 1 node (40 cores) || 20 nodes (800 cores)|| 15 minutes || 24 hours | |||
|- | |||
|Testing or troubleshooting || debug || 1 || 1 || 1 node (40 cores) || 4 nodes (160 cores)|| N/A || 1 hour | |||
|- | |||
|Archiving or retrieving data in [https://docs.scinet.utoronto.ca/index.php/HPSS HPSS]|| archivelong || 2 per user (max 5 total) || 10 per user || N/A || N/A|| 15 minutes || 72 hours | |||
|- | |||
|Inspecting archived data, small archival actions in [https://docs.scinet.utoronto.ca/index.php/HPSS HPSS] || archiveshort || 2 per user|| 10 per user || N/A || N/A || 15 minutes || 1 hour | |||
|} | |||
<!--T: | <!--T:178--> | ||
Within these limits, jobs will still have to wait in the queue. The waiting time depends on many factors such as the allocation amount, how much allocation was used in the recent past, the number of nodes and the walltime, and how many other jobs are waiting in the queue. | |||
<!--T: | == File Input/Output Tips == <!--T:224--> | ||
<!--T: | <!--T:225--> | ||
It is important to understand the file systems, so as to perform your file I/O (Input/Output) responsibly. Refer to the [[Data_management_at_niagara | Data management at Niagara]] page for details about the file systems. | |||
* Your files can be seen on all Niagara login and compute nodes. | |||
* $HOME, $SCRATCH, and $PROJECT all use the parallel file system called GPFS. | |||
* GPFS is a high-performance file system which provides rapid reads and writes to large data sets in parallel from many nodes. | |||
* Accessing data sets which consist of many, small files leads to poor performance on GPFS. | |||
* Avoid reading and writing lots of small amounts of data to disk. Many small files on the system waste space and are slower to access, read and write. If you must write many small files, use [https://docs.scinet.utoronto.ca/index.php/User_Ramdisk ramdisk]. | |||
* Write data out in a binary format. This is faster and takes less space. | |||
* The [https://docs.scinet.utoronto.ca/index.php/Burst_Buffer Burst Buffer] is better for i/o heavy jobs and to speed up [https://docs.scinet.utoronto.ca/index.php/Checkpoints checkpoints]. | |||
== Example submission script (MPI) == <!--T:90--> | |||
</translate> | |||
<source lang="bash"> | |||
#!/bin/bash | |||
#SBATCH --nodes=2 | |||
#SBATCH --ntasks=80 | |||
#SBATCH --time=1:00:00 | |||
#SBATCH --job-name mpi_job | |||
#SBATCH --output=mpi_output_%j.txt | |||
#SBATCH --mail-type=FAIL | |||
cd $SLURM_SUBMIT_DIR | |||
module load intel/2018.2 | |||
module load openmpi/3.1.0 | |||
mpirun ./mpi_example | |||
# or "srun ./mpi_example" | |||
</source> | |||
<translate> | |||
<!--T:91--> | |||
Submit this script from your scratch directory with the command: | |||
<source lang="bash">nia-login07:scratch$ sbatch mpi_job.sh</source> | |||
<!--T:226--> | |||
<ul> | |||
<li>First line indicates that this is a bash script.</li> | |||
<li>Lines starting with <code>#SBATCH</code> go to SLURM.</li> | |||
<li>sbatch reads these lines as a job request (which it gives the name <code>mpi_job</code>)</li> | |||
<li>In this case, SLURM looks for 2 nodes (each of which will have 40 cores) on which to run a total of 80 tasks, for 1 hour.<br>(Instead of specifying <tt>--ntasks=80</tt>, you can also ask for <tt>--ntasks-per-node=40</tt>, which amounts to the same.)</li> | |||
<li>Note that the mpifun flag "--ppn" (processors per node) is ignored.</li> | |||
<li>Once it found such a node, it runs the script: | |||
<ul> | <ul> | ||
<li> | <li>Change to the submission directory;</li> | ||
<li> | <li>Loads modules;</li> | ||
<li> | <li>Runs the <code>mpi_example</code> application (SLURM will inform mpirun or srun on how many processes to run). | ||
<li> | </li> | ||
</ul> | |||
<li>To use hyperthreading, just change --ntasks=80 to --ntasks=160, and add --bind-to none to the mpirun command (the latter is necessary for OpenMPI only, not when using IntelMPI). | |||
</ul> | </ul> | ||
== Example submission script (OpenMP) == <!--T:87--> | == Example submission script (OpenMP) == <!--T:87--> | ||
</translate> | </translate> | ||
<source lang="bash">#!/bin/bash | <source lang="bash">#!/bin/bash | ||
#!/bin/bash | |||
#SBATCH --nodes=1 | #SBATCH --nodes=1 | ||
#SBATCH --cpus-per-task=40 | #SBATCH --cpus-per-task=40 | ||
#SBATCH --time=1:00:00 | #SBATCH --time=1:00:00 | ||
#SBATCH --job-name | #SBATCH --job-name openmp_job | ||
#SBATCH --output= | #SBATCH --output=openmp_output_%j.txt | ||
#SBATCH --mail-type=FAIL | |||
cd $SLURM_SUBMIT_DIR | cd $SLURM_SUBMIT_DIR | ||
module load intel/2018.2 | module load intel/2018.2 | ||
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK | export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK | ||
./ | ./openmp_example | ||
# or "srun ./openmp_example". | |||
</source> | </source> | ||
<translate> | <translate> | ||
<!--T:89--> | <!--T:89--> | ||
Submit this script | Submit this script from your scratch directory with the command: | ||
<source lang="bash">nia-login07: | <source lang="bash">nia-login07:scratch$ sbatch openmp_job.sh</source> | ||
* First line indicates that this is a bash script. | * First line indicates that this is a bash script. | ||
* Lines starting with <code>#SBATCH</code> go to SLURM. | * Lines starting with <code>#SBATCH</code> go to SLURM. | ||
Line 495: | Line 482: | ||
* To use hyperthreading, just change <tt>--cpus-per-task=40</tt> to <tt>--cpus-per-task=80</tt>. | * To use hyperthreading, just change <tt>--cpus-per-task=40</tt> to <tt>--cpus-per-task=80</tt>. | ||
= | == Monitoring queued jobs == <!--T:92--> | ||
= Monitoring queued jobs = <!--T:92--> | |||
<!--T:93--> | <!--T:93--> | ||
Line 538: | Line 489: | ||
<!--T:94--> | <!--T:94--> | ||
<ul> | <ul> | ||
<li><p><code>squeue</code> or <code> | <li><p><code>squeue</code> or <code>sqc</code> (a caching version of squeue) to show the job queue (<code>squeue -u $USER</code> for just your jobs);</p></li> | ||
<li>< | <li><code>qsum</code> shows a summary of qudue by user | ||
<li><code>squeue -j JOBID</code> to get information on a specific job | |||
<p>(alternatively, <code>scontrol show job JOBID</code>, which is more verbose).</p></li> | <p>(alternatively, <code>scontrol show job JOBID</code>, which is more verbose).</p></li> | ||
<li><p><code>squeue --start -j JOBID</code> to get an estimate for when a job will run; these tend not to be very accurate predictions.</p></li> | <li><p><code>squeue --start -j JOBID</code> to get an estimate for when a job will run; these tend not to be very accurate predictions.</p></li> | ||
<li><p><code>scancel -i JOBID</code> to cancel the job.</p></li> | <li><p><code>scancel -i JOBID</code> to cancel the job.</p></li> | ||
<li><p><code>jobperf JOBID</code> to get an instantaneous view of the cpu and memory usage of the nodes of the job while it is running.</p></li> | <li><p><code>jobperf JOBID</code> to get an instantaneous view of the cpu and memory usage of the nodes of the job while it is running.</p></li> | ||
<li><p><code>sacct</code> to get information on your recent jobs.</p> | <li><p><code>sacct</code> to get information on your recent jobs.</p></li> | ||
</li> | |||
</ul> | </ul> | ||
= | <!--T:103--> | ||
Further instructions for monitoring your jobs can be found on the [https://docs.scinet.utoronto.ca/index.php/Slurm#Monitoring_jobs Slurm page]. The [https://my.scinet.utoronto.ca my.SciNet] site is also a very useful tool for monitoring your current and past usage. | |||
= Visualization = <!--T:203--> | |||
Information about how to use visualization tools on Niagara is available on [https://docs.scinet.utoronto.ca/index.php/Visualization Visualization] page. | |||
= Further information = <!--T:204--> | |||
<!--T:205--> | |||
'''Useful sites''' | |||
<!--T: | <!--T:206--> | ||
* | * SciNet: https://www.scinet.utoronto.ca | ||
* | * Niagara: [[Niagara|Niagara wiki page]] | ||
* | * System Status: https://docs.scinet.utoronto.ca/index.php/Main_Page | ||
* | * Training: https://support.scinet.utoronto.ca/education | ||
<!--T: | <!--T:207--> | ||
'''Support''' | |||
Contact our [[Technical support]] | |||
</translate> | </translate> |
Latest revision as of 15:34, 11 July 2024
Specifications[edit]
The Niagara cluster is a large cluster of 1548 Lenovo SD350 servers each with 40 Intel "Skylake" cores at 2.4 GHz. The peak performance of the cluster is 3.02 PFlops delivered / 4.75 PFlops theoretical. It is the 53rd fastest supercomputer on the TOP500 list of June 2018.
Each node of the cluster has 188 GiB / 202 GB RAM per node (at least 4 GiB/core for user jobs). Being designed for large parallel workloads, it has a fast interconnect consisting of EDR InfiniBand in a Dragonfly+ topology with Adaptive Routing. The compute nodes are accessed through a queueing system that allows jobs with a minimum of 15 minutes and a maximum of 24 hours and favours large jobs.
See the Intro to Niagara recording
More detailed hardware characteristics of the Niagara supercomputer can be found on this page.
Getting started on Niagara[edit]
Access to Niagara is not enabled automatically for everyone with an Alliance account, but anyone with an active Alliance account can get their access enabled.
If you have an active Alliance account but you do not have access to Niagara yet (e.g. because you are a new user and belong to a group whose primary PI does not have an allocation as granted in the annual Alliance RAC), go to the opt-in page on the CCDB site. After clicking the "Join" button on that page, it usually takes only one or two business days for access to be granted.
Please read this document carefully. The FAQ is also a useful resource. If at any time you require assistance, or if something is unclear, please do not hesitate to contact us.
Logging in[edit]
Niagara runs CentOS 7, which is a type of Linux. You will need to be familiar with Linux systems to work on Niagara. If you are not it will be worth your time to review the Linux introduction or to attend a local "Linux Shell" workshop.
As with all SciNet and Alliance compute systems, access to Niagara is done via ssh (secure shell) only. As of January 22 2022, authentication is only allowed via SSH keys. Please refer to this page to generate your SSH key pair and make sure you use them securely.
Open a terminal window (e.g. PuTTY on Windows or MobaXTerm), then ssh into the Niagara login nodes with your CC credentials:
$ ssh -i /path/to/ssh_private_key -Y MYCCUSERNAME@niagara.scinet.utoronto.ca
or
$ ssh -i /path/to/ssh_private_key -Y MYCCUSERNAME@niagara.computecanada.ca
The Niagara login nodes are where you develop, edit, compile, prepare and submit jobs.
These login nodes are not part of the Niagara compute cluster, but have the same architecture, operating system, and software stack.
The optional -Y
is needed to open windows from the Niagara command-line onto your local X server.
To run on Niagara's compute nodes, you must submit a batch job.
If you cannot log in, be sure first to check the System Status on this site's front page.
Your various directories[edit]
By virtue of your access to Niagara you are granted storage space on the system. There are several directories available to you, each indicated by an associated environment variable
home and scratch[edit]
You have a home and scratch directory on the system, whose locations are of the form
$HOME=/home/g/groupname/myccusername
$SCRATCH=/scratch/g/groupname/myccusername
where groupname is the name of your PI's group, and myccusername is your CC username. For example:
nia-login07:~$ pwd
/home/s/scinet/rzon
nia-login07:~$ cd $SCRATCH
nia-login07:rzon$ pwd
/scratch/s/scinet/rzon
NOTE: home is read-only on compute nodes.
project and archive[edit]
Users from groups with RAC storage allocation will also have a project and possibly an archive directory.
$PROJECT=/project/g/groupname/myccusername
$ARCHIVE=/archive/g/groupname/myccusername
NOTE: Currently archive space is available only via HPSS, and is not accessible on the Niagara login, compute, or datamover nodes.
IMPORTANT: Future-proof your scripts
When writing your scripts, use the environment variables ($HOME, $SCRATCH, $PROJECT, $ARCHIVE) instead of the actual paths! The paths may change in the future.
Storage and quotas[edit]
You should familiarize yourself with the various file systems, what purpose they serve, and how to properly use them. This table summarizes the various file systems. See the Data management at Niagara page for more details.
location | quota | block size | expiration time | backed up | on login nodes | on compute nodes | |
---|---|---|---|---|---|---|---|
$HOME | 100 GB per user | 1 MB | yes | yes | read-only | ||
$SCRATCH | 25 TB per user | 16 MB | 2 months | no | yes | yes | |
50-500TB per group | depending on group size | ||||||
$PROJECT | by group allocation | 16 MB | yes | yes | yes | ||
$ARCHIVE | by group allocation | dual-copy | no | no | |||
$BBUFFER | 10 TB per user | 1 MB | very short | no | yes | yes |
Moving data to Niagara[edit]
If you need to move data to Niagara for analysis, or when you need to move data off of Niagara, use the following guidelines:
- If your data is less than 10GB, move the data using the login nodes.
- If your data is greater than 10GB, move the data using the datamover nodes nia-datamover1.scinet.utoronto.ca and nia-datamover2.scinet.utoronto.ca .
Details of how to use the datamover nodes can be found on the Data management at Niagara page.
Loading software modules[edit]
You have two options for running code on Niagara: use existing software, or compile your own. This section focuses on the former.
Other than essentials, all installed software is made available using module commands. These modules set environment variables (PATH, etc.), allowing multiple, conflicting versions of a given package to be available. A detailed explanation of the module system can be found on the modules page.
Common module subcommands are:
module load <module-name>
: use particular softwaremodule purge
: remove currently loaded modulesmodule spider
(or module spider <module-name>
): list available software packagesmodule avail
: list loadable software packagesmodule list
: list loaded modules
Along with modifying common environment variables, such as PATH, and LD_LIBRARY_PATH, these modules also create a SCINET_MODULENAME_ROOT environment variable, which can be used to access commonly needed software directories, such as /include and /lib.
There are handy abbreviations for the module commands. ml
is the same as module list
, and ml <module-name>
is the same as module load <module-name>
.
Software stacks: NiaEnv and CCEnv[edit]
On Niagara, there are two available software stacks:
A Niagara software stack tuned and compiled for this machine. This stack is available by default, but if not, can be reloaded with
module load NiaEnv
The standard Alliance software stack which is available on Alliance's other clusters (including Graham, Cedar, Narval, and Beluga):
module load CCEnv arch/avx512
(without the arch/avx512 module, you'd get the modules for a previous generation of CPUs)Or, if you want the same default modules loaded as on Cedar, Graham, and Beluga, then do
module load CCEnv arch/avx512 StdEnv/2018.3
Tips for loading software[edit]
We advise against loading modules in your .bashrc.
This could lead to very confusing behaviour under certain circumstances.
Our guidelines for .bashrc files can be found here
Instead, load modules by hand when needed, or by sourcing a separate script.
Load run-specific modules inside your job submission script.
Short names give default versions; e.g. intel
→ intel/2018.2
. It is usually better to be explicit about the versions, for future reproducibility.
Modules sometimes require other modules to be loaded first.
Solve these dependencies by using module spider
.
Available compilers and interpreters[edit]
- For most compiled software, one should use the Intel compilers (icc for C, icpc for C++, and ifort for Fortran). Loading an intel module makes these available.
- The GNU compiler suite (gcc, g++, gfortran) is also available, if you load one of the gcc modules.
- Open source interpreted, interactive software is also available:
Please visit the Python or R page for details on using these tools. For information on running MATLAB applications on Niagara, visit this page.
Using Commercial Software[edit]
May I use commercial software on Niagara?
- Possibly, but you have to bring your own license for it. You can connect to an external license server using ssh tunneling.
- SciNet and Alliance have an extremely large and broad user base of thousands of users, so we cannot provide licenses for everyone's favorite software.
- Thus, the only commercial software installed on Niagara is software that can benefit everyone: compilers, math libraries and debuggers.
- That means no MATLAB, Gaussian, IDL,
- Open source alternatives like Octave, Python, and R are available.
- We are happy to help you to install commercial software for which you have a license.
- In some cases, if you have a license, you can use software in the Alliance stack.
The list of commercial software which is installed on Niagara, for which you will need a license to use, can be found on the commercial software page.
Compiling on Niagara: Example[edit]
Suppose one want to compile an application from two c source files, main.c and module.c, which use the Gnu Scientific Library (GSL). This is an example of how this would be done:
nia-login07:~$ module list
Currently Loaded Modules:
1) NiaEnv/2018a (S)
Where:
S: Module is Sticky, requires --force to unload or purge
nia-login07:~$ module load intel/2018.2 gsl/2.4
nia-login07:~$ ls
appl.c module.c
nia-login07:~$ icc -c -O3 -xHost -o appl.o appl.c
nia-login07:~$ icc -c -O3 -xHost -o module.o module.c
nia-login07:~$ icc -o appl module.o appl.o -lgsl -mkl
nia-login07:~$ ./appl
Note:
- The optimization flags -O3 -xHost allow the Intel compiler to use instructions specific to the architecture CPU that is present (instead of for more generic x86_64 CPUs).
- Linking with this library is easy when using the intel compiler, it just requires the -mkl flags.
- If compiling with gcc, the optimization flags would be -O3 -march=native. For the way to link with the MKL, it is suggested to use the MKL link line advisor.
Testing[edit]
You really should test your code before you submit it to the cluster to know if your code is correct and what kind of resources you need.
- Small test jobs can be run on the login nodes.
Rule of thumb: tests should run no more than a couple of minutes, taking at most about 1-2GB of memory, and use no more than a couple of cores.
-
You can run the ddt debugger on the login nodes after
module load ddt
. -
Short tests that do not fit on a login node, or for which you need a dedicated node, request an interactive debug job with the debug command:
nia-login07:~$ debugjob N
where N is the number of nodes, If N=1, this gives an interactive session one 1 hour, when N=4 (the maximum), it gives you 30 minutes.
Finally, if your debugjob process takes more than 1 hour, you can request an interactive job from the regular queue using the salloc command. Note, however, that this may take some time to run, since it will be part of the regular queue, and will be run when the scheduler decides.
nia-login07:~$ salloc --nodes N --time=M:00:00
here N is again the number of nodes, and M is the number of hours you wish the job to run.
If you need to use graphics while testing your code through salloc, e.g. when using a debugger such as DDT or DDD, you have the following options, please visit the Testing with graphics page.
Submitting jobs[edit]
Niagara uses SLURM as its job scheduler.
You submit jobs from a login node by passing a script to the sbatch command:
nia-login07:scratch$ sbatch jobscript.sh
This puts the job in the queue. It will run on the compute nodes in due course.
In most cases, you will want to submit from your $SCRATCH directory, so that the output of your compute job can be written out (as mentioned above, $HOME is read-only on the compute nodes).
Jobs will run under their group's RRG allocation, or, if the group has none, under a RAS allocation (previously called 'default' allocation).
Some example job scripts can be found below.
Keep in mind:
Scheduling is by node, so in multiples of 40-cores.
Your job's maximum walltime is 24 hours.
Jobs must write to your scratch or project directory (home is read-only on compute nodes).
Compute nodes have no internet access.
Move your data to Niagara before you submit your job.
Scheduling by node[edit]
On many systems that use SLURM, the scheduler will deduce from the specifications of the number of tasks and the number of cpus-per-node what resources should be allocated. On Niagara things are a bit different.
All job resource requests on Niagara are scheduled as a multiple of nodes.
- The nodes that your jobs run on are exclusively yours, for as long as the job is running on them.
- No other users are running anything on them.
- You can ssh into them to see how things are going.
Whatever your requests to the scheduler, it will always be translated into a multiple of nodes allocated to your job.
Memory requests to the scheduler are of no use. Your job always gets N x 202GB of RAM, where N is the number of nodes and 202GB is the amount of memory on the node.
If you run serial jobs you must still use all 40 cores on the node. Visit the serial jobs page for examples of how to do this.
Since there are 40 cores per node, your job should use N x 40 cores. If you do not, we will contact you to help you optimize your workflow. Or you can contact us to get assistance.
Limits[edit]
There are limits to the size and duration of your jobs, the number of jobs you can run and the number of jobs you can have queued. It matters whether a user is part of a group with a Resources for Research Group allocation or not. It also matters in which 'partition' the jobs runs. 'Partitions' are SLURM-speak for use cases. You specify the partition with the -p parameter to sbatch or salloc, but if you do not specify one, your job will run in the compute partition, which is the most common case.
Usage | Partition | Running jobs | Submitted jobs (incl. running) | Min. size of jobs | Max. size of jobs | Min. walltime | Max. walltime |
---|---|---|---|---|---|---|---|
Compute jobs with an allocation | compute | 50 | 1000 | 1 node (40 cores) | 1000 nodes (40000 cores) | 15 minutes | 24 hours |
Compute jobs without allocation ("default") | compute | 50 | 200 | 1 node (40 cores) | 20 nodes (800 cores) | 15 minutes | 24 hours |
Testing or troubleshooting | debug | 1 | 1 | 1 node (40 cores) | 4 nodes (160 cores) | N/A | 1 hour |
Archiving or retrieving data in HPSS | archivelong | 2 per user (max 5 total) | 10 per user | N/A | N/A | 15 minutes | 72 hours |
Inspecting archived data, small archival actions in HPSS | archiveshort | 2 per user | 10 per user | N/A | N/A | 15 minutes | 1 hour |
Within these limits, jobs will still have to wait in the queue. The waiting time depends on many factors such as the allocation amount, how much allocation was used in the recent past, the number of nodes and the walltime, and how many other jobs are waiting in the queue.
File Input/Output Tips[edit]
It is important to understand the file systems, so as to perform your file I/O (Input/Output) responsibly. Refer to the Data management at Niagara page for details about the file systems.
- Your files can be seen on all Niagara login and compute nodes.
- $HOME, $SCRATCH, and $PROJECT all use the parallel file system called GPFS.
- GPFS is a high-performance file system which provides rapid reads and writes to large data sets in parallel from many nodes.
- Accessing data sets which consist of many, small files leads to poor performance on GPFS.
- Avoid reading and writing lots of small amounts of data to disk. Many small files on the system waste space and are slower to access, read and write. If you must write many small files, use ramdisk.
- Write data out in a binary format. This is faster and takes less space.
- The Burst Buffer is better for i/o heavy jobs and to speed up checkpoints.
Example submission script (MPI)[edit]
#!/bin/bash
#SBATCH --nodes=2
#SBATCH --ntasks=80
#SBATCH --time=1:00:00
#SBATCH --job-name mpi_job
#SBATCH --output=mpi_output_%j.txt
#SBATCH --mail-type=FAIL
cd $SLURM_SUBMIT_DIR
module load intel/2018.2
module load openmpi/3.1.0
mpirun ./mpi_example
# or "srun ./mpi_example"
Submit this script from your scratch directory with the command:
nia-login07:scratch$ sbatch mpi_job.sh
- First line indicates that this is a bash script.
- Lines starting with
#SBATCH
go to SLURM. - sbatch reads these lines as a job request (which it gives the name
mpi_job
) - In this case, SLURM looks for 2 nodes (each of which will have 40 cores) on which to run a total of 80 tasks, for 1 hour.
(Instead of specifying --ntasks=80, you can also ask for --ntasks-per-node=40, which amounts to the same.) - Note that the mpifun flag "--ppn" (processors per node) is ignored.
- Once it found such a node, it runs the script:
- Change to the submission directory;
- Loads modules;
- Runs the
mpi_example
application (SLURM will inform mpirun or srun on how many processes to run).
- To use hyperthreading, just change --ntasks=80 to --ntasks=160, and add --bind-to none to the mpirun command (the latter is necessary for OpenMPI only, not when using IntelMPI).
Example submission script (OpenMP)[edit]
#!/bin/bash
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --cpus-per-task=40
#SBATCH --time=1:00:00
#SBATCH --job-name openmp_job
#SBATCH --output=openmp_output_%j.txt
#SBATCH --mail-type=FAIL
cd $SLURM_SUBMIT_DIR
module load intel/2018.2
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./openmp_example
# or "srun ./openmp_example".
Submit this script from your scratch directory with the command:
nia-login07:scratch$ sbatch openmp_job.sh
- First line indicates that this is a bash script.
- Lines starting with
#SBATCH
go to SLURM. - sbatch reads these lines as a job request (which it gives the name
openmp_ex
) . - In this case, SLURM looks for one node with 40 cores to be run inside one task, for 1 hour.
- Once it found such a node, it runs the script:
- Change to the submission directory;
- Loads modules (must be done again in the submission script on Niagara);
- Sets an environment variable to set the number of threads to 40 (no hyperthreading in this example);
- Runs the
appl_openmp_ex
application.
- To use hyperthreading, just change --cpus-per-task=40 to --cpus-per-task=80.
Monitoring queued jobs[edit]
Once the job is incorporated into the queue, there are some command you can use to monitor its progress.
squeue
orsqc
(a caching version of squeue) to show the job queue (squeue -u $USER
for just your jobs);qsum
shows a summary of qudue by usersqueue -j JOBID
to get information on a specific job(alternatively,
scontrol show job JOBID
, which is more verbose).squeue --start -j JOBID
to get an estimate for when a job will run; these tend not to be very accurate predictions.scancel -i JOBID
to cancel the job.jobperf JOBID
to get an instantaneous view of the cpu and memory usage of the nodes of the job while it is running.sacct
to get information on your recent jobs.
Further instructions for monitoring your jobs can be found on the Slurm page. The my.SciNet site is also a very useful tool for monitoring your current and past usage.
Visualization[edit]
Information about how to use visualization tools on Niagara is available on Visualization page.
Further information[edit]
Useful sites
- SciNet: https://www.scinet.utoronto.ca
- Niagara: Niagara wiki page
- System Status: https://docs.scinet.utoronto.ca/index.php/Main_Page
- Training: https://support.scinet.utoronto.ca/education
Support Contact our Technical support