Advanced Jupyter configuration: Difference between revisions

From Alliance Doc
Jump to navigation Jump to search
(Added translation sections around code examples)
(Marked this version for translation)
Line 2: Line 2:
<translate>
<translate>


= Introduction =
= Introduction = <!--T:1-->


<!--T:2-->
* '''Project Jupyter''': "a non-profit, open-source project, born out of the IPython Project in 2014 as it evolved to support interactive data science and scientific computing across all programming languages."<ref>https://jupyter.org/about.html</ref>
* '''Project Jupyter''': "a non-profit, open-source project, born out of the IPython Project in 2014 as it evolved to support interactive data science and scientific computing across all programming languages."<ref>https://jupyter.org/about.html</ref>
* '''JupyterLab''': "a web-based interactive development environment for notebooks, code, and data. Its flexible interface allows users to configure and arrange workflows in data science, scientific computing, computational journalism, and machine learning. A modular design allows for extensions that expand and enrich functionality."<ref>https://jupyter.org/</ref>
* '''JupyterLab''': "a web-based interactive development environment for notebooks, code, and data. Its flexible interface allows users to configure and arrange workflows in data science, scientific computing, computational journalism, and machine learning. A modular design allows for extensions that expand and enrich functionality."<ref>https://jupyter.org/</ref>


<!--T:3-->
A JupyterLab server should only run on a compute node or on a cloud instance; cluster login nodes are not a good choice because they impose various limits which can stop applications if they consume too much CPU time or memory. In the case of using a compute node, users can reserve compute resources by [[Running_jobs|submitting a job]] that requests a specific number of CPUs (and optionally GPUs), an amount of memory and the run time. '''In this page, we give detailed instructions on how to configure and submit a JupyterLab job on any national cluster.'''
A JupyterLab server should only run on a compute node or on a cloud instance; cluster login nodes are not a good choice because they impose various limits which can stop applications if they consume too much CPU time or memory. In the case of using a compute node, users can reserve compute resources by [[Running_jobs|submitting a job]] that requests a specific number of CPUs (and optionally GPUs), an amount of memory and the run time. '''In this page, we give detailed instructions on how to configure and submit a JupyterLab job on any national cluster.'''


<!--T:4-->
But, what about ...
But, what about ...
* ''Jupyter Notebook''? JupyterLab is a more modern and flexible interface than the ''classic'' '''[[JupyterNotebook|Jupyter Notebook]]'''
* ''Jupyter Notebook''? JupyterLab is a more modern and flexible interface than the ''classic'' '''[[JupyterNotebook|Jupyter Notebook]]'''
* A preconfigured JupyterLab service? '''[[JupyterHub#Compute_Canada_initiatives|Some regional partners]]''' provide a web portal named ''JupyterHub''. For instance, many of these portals offer a '''[[JupyterHub#JupyterLab|preconfigured JupyterLab]]''' service so that users do not have to create their own setup. To learn more, visit the '''[[JupyterHub]]''' wiki page
* A preconfigured JupyterLab service? '''[[JupyterHub#Compute_Canada_initiatives|Some regional partners]]''' provide a web portal named ''JupyterHub''. For instance, many of these portals offer a '''[[JupyterHub#JupyterLab|preconfigured JupyterLab]]''' service so that users do not have to create their own setup. To learn more, visit the '''[[JupyterHub]]''' wiki page


= Installing JupyterLab =
= Installing JupyterLab = <!--T:5-->


<!--T:6-->
These instructions install JupyterLab with the <code>pip</code> command in a
These instructions install JupyterLab with the <code>pip</code> command in a
[[Python#Creating_and_using_a_virtual_environment|Python virtual environment]]:
[[Python#Creating_and_using_a_virtual_environment|Python virtual environment]]:


<!--T:7-->
<ol>
<ol>
<li>Load a Python module, either the default one (as shown below) or
<li>Load a Python module, either the default one (as shown below) or
Line 25: Line 30:
}}
}}
</li><translate>
</li><translate>
<!--T:8-->
<li>Create a new Python virtual environment:
<li>Create a new Python virtual environment:
</translate>{{Command2
</translate>{{Command2
Line 30: Line 36:
}}
}}
</li><translate>
</li><translate>
<!--T:9-->
<li>Activate your newly created Python virtual environment:
<li>Activate your newly created Python virtual environment:
</translate>{{Command2
</translate>{{Command2
Line 35: Line 42:
}}
}}
</li><translate>
</li><translate>
<!--T:10-->
<li>Install JupyterLab in your new virtual environment (note: it takes a few minutes):
<li>Install JupyterLab in your new virtual environment (note: it takes a few minutes):
</translate>{{Command2
</translate>{{Command2
Line 41: Line 49:
}}
}}
</li><translate>
</li><translate>
<!--T:11-->
<li>In the virtual environment, create a wrapper script that launches JupyterLab:
<li>In the virtual environment, create a wrapper script that launches JupyterLab:
</translate>{{Command2
</translate>{{Command2
Line 47: Line 56:
}}
}}
</li><translate>
</li><translate>
<!--T:12-->
<li>Finally, make the script executable:
<li>Finally, make the script executable:
</translate>{{Command2
</translate>{{Command2
Line 55: Line 65:
</ol><translate>
</ol><translate>


= Installing extensions =
= Installing extensions = <!--T:13-->


<!--T:14-->
Extensions allow you to add functionalities and modify the JupyterLab’s user interface.  
Extensions allow you to add functionalities and modify the JupyterLab’s user interface.  


=== Jupyter Lmod ===
=== Jupyter Lmod === <!--T:15-->


<!--T:16-->
[https://github.com/cmd-ntrf/jupyter-lmod Jupyter Lmod] is an extension that allows you to interact with environment modules before launching kernels. The extension uses the Lmod's Python interface to accomplish module-related tasks like loading, unloading, saving a collection, etc.
[https://github.com/cmd-ntrf/jupyter-lmod Jupyter Lmod] is an extension that allows you to interact with environment modules before launching kernels. The extension uses the Lmod's Python interface to accomplish module-related tasks like loading, unloading, saving a collection, etc.


<!--T:17-->
The following commands will install and enable the Jupyter Lmod extension in your environment (note: the third command takes a few minutes to complete):
The following commands will install and enable the Jupyter Lmod extension in your environment (note: the third command takes a few minutes to complete):


Line 72: Line 85:
}}<translate>
}}<translate>


<!--T:18-->
Instructions on how to configure ''software'' modules in the JupyterLab interface are provided in the [[JupyterHub#JupyterLab|JupyterHub page]].
Instructions on how to configure ''software'' modules in the JupyterLab interface are provided in the [[JupyterHub#JupyterLab|JupyterHub page]].


= Using your installation =
= Using your installation = <!--T:19-->


== Activating the environment ==
== Activating the environment == <!--T:20-->


<!--T:21-->
Make sure the Python virtual environment in which you have installed JupyterLab is activated.
Make sure the Python virtual environment in which you have installed JupyterLab is activated.
For example, when you log into the cluster, you have to activate it again with:
For example, when you log into the cluster, you have to activate it again with:
Line 84: Line 99:
}}<translate>
}}<translate>


<!--T:22-->
To verify that your environment is ready, you can get a list of installed <code>jupyter*</code> packages with the following command:
To verify that your environment is ready, you can get a list of installed <code>jupyter*</code> packages with the following command:
</translate>{{Command2
</translate>{{Command2
Line 97: Line 113:
}}<translate>
}}<translate>


== Starting JupyterLab ==
== Starting JupyterLab == <!--T:23-->


<!--T:24-->
To start a JupyterLab server, submit an interactive job with <code>salloc</code>. Adjust the parameters based on your needs. See [[Running jobs]] for more information.
To start a JupyterLab server, submit an interactive job with <code>salloc</code>. Adjust the parameters based on your needs. See [[Running jobs]] for more information.


Line 118: Line 135:
}}<translate>
}}<translate>


== Connecting to JupyterLab ==
== Connecting to JupyterLab == <!--T:25-->


<!--T:26-->
To access JupyterLab running on a compute node from your web browser, you will need to create an [[SSH tunnelling|SSH tunnel]] from your computer through the cluster since the compute nodes are not directly accessible from the Internet.
To access JupyterLab running on a compute node from your web browser, you will need to create an [[SSH tunnelling|SSH tunnel]] from your computer through the cluster since the compute nodes are not directly accessible from the Internet.


=== From Linux or macOS ===
=== From Linux or macOS === <!--T:27-->


<!--T:28-->
On a Linux or macOS system, we recommend using the [https://sshuttle.readthedocs.io sshuttle] Python package.
On a Linux or macOS system, we recommend using the [https://sshuttle.readthedocs.io sshuttle] Python package.


<!--T:29-->
On your computer, open a new terminal window and create the SSH tunnel with the following <code>sshuttle</code> command where <code><username></code> must be substituted by your Compute Canada username, and <code><cluster></code> by the cluster on which you have launched JupyterLab:
On your computer, open a new terminal window and create the SSH tunnel with the following <code>sshuttle</code> command where <code><username></code> must be substituted by your Compute Canada username, and <code><cluster></code> by the cluster on which you have launched JupyterLab:


Line 133: Line 153:
}}<translate>
}}<translate>


<!--T:30-->
Then, copy and paste the first provided HTTP address into your Web browser. In the above <code>salloc</code> example, this would be:
Then, copy and paste the first provided HTTP address into your Web browser. In the above <code>salloc</code> example, this would be:


Line 139: Line 160:
</pre><translate>
</pre><translate>


=== From Windows ===
=== From Windows === <!--T:31-->


<!--T:32-->
An [[SSH tunnelling|SSH tunnel]] can be created from Windows using [[Connecting_with_MobaXTerm | MobaXTerm]] as follows. Note: this procedure also works from a terminal in any Unix system (like Linux, macOS, etc).
An [[SSH tunnelling|SSH tunnel]] can be created from Windows using [[Connecting_with_MobaXTerm | MobaXTerm]] as follows. Note: this procedure also works from a terminal in any Unix system (like Linux, macOS, etc).


<!--T:33-->
<ol>
<ol>
<li>Once JupyterLab is launched on a compute node (see [[#Starting_JupyterLab|Starting JupyterLab]]), you can extract the <code>hostname:port</code> and the <code>token</code> from the first provided HTTP address. For example:
<li>Once JupyterLab is launched on a compute node (see [[#Starting_JupyterLab|Starting JupyterLab]]), you can extract the <code>hostname:port</code> and the <code>token</code> from the first provided HTTP address. For example:
Line 151: Line 174:
</pre>
</pre>
</li><translate>
</li><translate>
<!--T:34-->
<li>Open a new Terminal tab in MobaXTerm. In the following command, substitute <code><hostname:port></code> by its corresponding value (refer to the above figure), substitute <code><username></code> by your Compute Canada username, and substitute <code><cluster></code> by the cluster on which you have launched JupyterLab:
<li>Open a new Terminal tab in MobaXTerm. In the following command, substitute <code><hostname:port></code> by its corresponding value (refer to the above figure), substitute <code><username></code> by your Compute Canada username, and substitute <code><cluster></code> by the cluster on which you have launched JupyterLab:
</translate>{{Command2
</translate>{{Command2
Line 157: Line 181:
}}
}}
</li><translate>
</li><translate>
<!--T:35-->
<li>Open your Web browser and go to the following address where <code><token></code> must be substituted by the alphanumerical value extracted from the above figure:
<li>Open your Web browser and go to the following address where <code><token></code> must be substituted by the alphanumerical value extracted from the above figure:
</translate><pre>
</translate><pre>
Line 164: Line 189:
</ol><translate>
</ol><translate>


== Shutting down JupyterLab ==
== Shutting down JupyterLab == <!--T:36-->


<!--T:37-->
You can shut down the JupyterLab server before the walltime limit by pressing '''Ctrl-C twice''' in the terminal that launched the interactive job.
You can shut down the JupyterLab server before the walltime limit by pressing '''Ctrl-C twice''' in the terminal that launched the interactive job.


<!--T:38-->
If you have used MobaXterm to create an SSH tunnel, press '''Ctrl-D''' to shut down the tunnel.
If you have used MobaXterm to create an SSH tunnel, press '''Ctrl-D''' to shut down the tunnel.


= Adding kernels =
= Adding kernels = <!--T:39-->


<!--T:40-->
It is possible to add kernels for other programming languages, for a different Python version or for a persistent virtual environment that has all required packages and libraries for your project. Refer to [http://jupyter-client.readthedocs.io/en/latest/kernels.html Making kernels for Jupyter] to learn more.
It is possible to add kernels for other programming languages, for a different Python version or for a persistent virtual environment that has all required packages and libraries for your project. Refer to [http://jupyter-client.readthedocs.io/en/latest/kernels.html Making kernels for Jupyter] to learn more.


<!--T:41-->
The installation of a new kernel is done in two steps:
The installation of a new kernel is done in two steps:
# Installation of the packages that will allow the language interpreter to communicate with the Jupyter interface.  
# Installation of the packages that will allow the language interpreter to communicate with the Jupyter interface.  
# Creation of a file that will indicate to JupyterLab how to initiate a communication channel with the language interpreter. This file is called a ''kernel spec file'', and it will be saved in a sub-folder of <code>~/.local/share/jupyter/kernels</code>.
# Creation of a file that will indicate to JupyterLab how to initiate a communication channel with the language interpreter. This file is called a ''kernel spec file'', and it will be saved in a sub-folder of <code>~/.local/share/jupyter/kernels</code>.


<!--T:42-->
In the following sections, we provide a few examples of the kernel installation procedure.
In the following sections, we provide a few examples of the kernel installation procedure.


== Julia Kernel ==
== Julia Kernel == <!--T:43-->


<!--T:44-->
Prerequisites:
Prerequisites:
# The configuration of a Julia kernel depends on a Python virtual environment that already has all the '''[[#Python_Kernel|Python Kernel]]''' dependencies. If you do not have such virtual environment, make sure to follow instructions listed in the next section.
# The configuration of a Julia kernel depends on a Python virtual environment that already has all the '''[[#Python_Kernel|Python Kernel]]''' dependencies. If you do not have such virtual environment, make sure to follow instructions listed in the next section.
# Since the installation of Julia packages requires an access to Internet, the configuration of a Julia kernel must be done in a '''[[SSH|remote shell session on a login node]]'''.
# Since the installation of Julia packages requires an access to Internet, the configuration of a Julia kernel must be done in a '''[[SSH|remote shell session on a login node]]'''.


<!--T:45-->
Once you have a Python virtual environment available and activated, you may configure the Julia kernel:
Once you have a Python virtual environment available and activated, you may configure the Julia kernel:


<!--T:46-->
<ol>
<ol>
<li>Load the '''[[Julia]]''' module:
<li>Load the '''[[Julia]]''' module:
Line 195: Line 228:
}}
}}
</li><translate>
</li><translate>
<!--T:47-->
<li>Install IJulia:
<li>Install IJulia:
</translate>{{Command2
</translate>{{Command2
Line 201: Line 235:
}}
}}
</li><translate>
</li><translate>
<!--T:48-->
<li>'''Important''': start or restart a new JupyterLab session before using the Julia kernel.</li>
<li>'''Important''': start or restart a new JupyterLab session before using the Julia kernel.</li>
</ol>
</ol>


<!--T:49-->
For more information, see the [https://github.com/JuliaLang/IJulia.jl IJulia documentation].
For more information, see the [https://github.com/JuliaLang/IJulia.jl IJulia documentation].


=== Installing more Julia packages ===
=== Installing more Julia packages === <!--T:50-->


<!--T:51-->
As in the above installation procedure, it is required to install Julia packages from a login node, but the Python virtual environment could be deactivated:
As in the above installation procedure, it is required to install Julia packages from a login node, but the Python virtual environment could be deactivated:


<!--T:52-->
<ol>
<ol>
<li>Make sure the same Julia module is loaded:
<li>Make sure the same Julia module is loaded:
Line 216: Line 254:
}}
}}
</li><translate>
</li><translate>
<!--T:53-->
<li>Install any required package. For example with <code>Glob</code>:
<li>Install any required package. For example with <code>Glob</code>:
</translate>{{Command2
</translate>{{Command2
Line 221: Line 260:
}}
}}
</li><translate>
</li><translate>
<!--T:54-->
<li>The newly installed Julia packages should already be usable in a notebook executed by the Julia kernel.</li>
<li>The newly installed Julia packages should already be usable in a notebook executed by the Julia kernel.</li>
</ol>
</ol>


== Python Kernel ==
== Python Kernel == <!--T:55-->


<!--T:56-->
In a terminal with an active session on the remote server,
In a terminal with an active session on the remote server,
you may configure a [[Python#Creating_and_using_a_virtual_environment|Python virtual environment]] with all the required [[Available_Python_wheels|Python modules]]
you may configure a [[Python#Creating_and_using_a_virtual_environment|Python virtual environment]] with all the required [[Available_Python_wheels|Python modules]]
Line 232: Line 273:
in a new Python virtual environment:
in a new Python virtual environment:


<!--T:57-->
<ol>
<ol>
<li>If you do not have a Python virtual environment for Jupyter, create one. Then, activate it:</li>
<li>If you do not have a Python virtual environment for Jupyter, create one. Then, activate it:</li>
Line 240: Line 282:
}}
}}
</li><translate>
</li><translate>
<!--T:58-->
<li>Load a Python module:
<li>Load a Python module:
</translate>{{Command2
</translate>{{Command2
Line 245: Line 288:
}}
}}
</li><translate>
</li><translate>
<!--T:59-->
<li>Create a new Python virtual environment:
<li>Create a new Python virtual environment:
</translate>{{Command2
</translate>{{Command2
Line 250: Line 294:
}}
}}
</li><translate>
</li><translate>
<!--T:60-->
<li>Activate your newly created Python virtual environment:
<li>Activate your newly created Python virtual environment:
</translate>{{Command2
</translate>{{Command2
Line 256: Line 301:
</ol>
</ol>
</li><translate>
</li><translate>
<!--T:61-->
<li>Install the <code>ipykernel</code> library:
<li>Install the <code>ipykernel</code> library:
</translate>{{Command2
</translate>{{Command2
Line 262: Line 308:
}}
}}
</li><translate>
</li><translate>
<!--T:62-->
<li>Create the common <code>kernels</code> folder:
<li>Create the common <code>kernels</code> folder:
</translate>{{Command2
</translate>{{Command2
Line 268: Line 315:
}}
}}
</li><translate>
</li><translate>
<!--T:63-->
<li>Generate the kernel spec file. Substitute <code><unique_name></code> by a name that will uniquely identify your kernel:
<li>Generate the kernel spec file. Substitute <code><unique_name></code> by a name that will uniquely identify your kernel:
</translate>{{Command2
</translate>{{Command2
Line 274: Line 322:
}}
}}
</li><translate>
</li><translate>
<!--T:64-->
<li>'''Important''': start or restart a new JupyterLab session before using the Python kernel.</li>
<li>'''Important''': start or restart a new JupyterLab session before using the Python kernel.</li>
</ol>
</ol>


<!--T:65-->
For more information, see the [http://ipython.readthedocs.io/en/stable/install/kernel_install.html ipykernel documentation].
For more information, see the [http://ipython.readthedocs.io/en/stable/install/kernel_install.html ipykernel documentation].


=== Installing more Python libraries ===
=== Installing more Python libraries === <!--T:66-->


<!--T:67-->
Based on the Python virtual environment configured in the previous section:
Based on the Python virtual environment configured in the previous section:


<!--T:68-->
<ol>
<ol>
<li>If you are using the Jupyter ''Terminal'' via [[JupyterHub]], make sure the activated Python virtual environment is running in a clean Bash environment. See the above section for details.</li>
<li>If you are using the Jupyter ''Terminal'' via [[JupyterHub]], make sure the activated Python virtual environment is running in a clean Bash environment. See the above section for details.</li>
Line 291: Line 343:
}}
}}
</li><translate>
</li><translate>
<!--T:69-->
<li>The newly installed Python libraries can now be imported in any notebook using the <code>Python 3.x Kernel</code>.</li>
<li>The newly installed Python libraries can now be imported in any notebook using the <code>Python 3.x Kernel</code>.</li>
</ol>
</ol>


== R Kernel ==
== R Kernel == <!--T:70-->


<!--T:71-->
Prerequisites:
Prerequisites:
# Configuring an R kernel still depends on a Python virtual environment that already has all the '''[[#Python_Kernel|Python Kernel]]''' dependencies. If you do not have such virtual environment, make sure to follow instructions listed in the previous section.
# Configuring an R kernel still depends on a Python virtual environment that already has all the '''[[#Python_Kernel|Python Kernel]]''' dependencies. If you do not have such virtual environment, make sure to follow instructions listed in the previous section.
# Since the installation of R packages requires an access to '''[https://cran.r-project.org/ CRAN]''', the configuration of an R kernel must be done in a '''[[SSH|remote shell session on a login node]]'''.
# Since the installation of R packages requires an access to '''[https://cran.r-project.org/ CRAN]''', the configuration of an R kernel must be done in a '''[[SSH|remote shell session on a login node]]'''.


<!--T:72-->
Once you have a Python virtual environment available and activated, you may configure the R kernel:
Once you have a Python virtual environment available and activated, you may configure the R kernel:


<!--T:73-->
<ol>
<ol>
<li>Load an R module:
<li>Load an R module:
Line 309: Line 365:
}}
}}
</li><translate>
</li><translate>
<!--T:74-->
<li>Install the R kernel dependencies (<code>crayon</code>, <code>pbdZMQ</code>, <code>devtools</code>) - this will take up to 10 minutes, and packages should be installed in a local directory like <code>~/R/x86_64-pc-linux-gnu-library/4.1</code>:
<li>Install the R kernel dependencies (<code>crayon</code>, <code>pbdZMQ</code>, <code>devtools</code>) - this will take up to 10 minutes, and packages should be installed in a local directory like <code>~/R/x86_64-pc-linux-gnu-library/4.1</code>:
</translate>{{Command2
</translate>{{Command2
Line 316: Line 373:
}}
}}
</li><translate>
</li><translate>
<!--T:75-->
<li>Install the R kernel.
<li>Install the R kernel.
</translate>{{Command2
</translate>{{Command2
Line 322: Line 380:
}}
}}
</li><translate>
</li><translate>
<!--T:76-->
<li>Install the R kernel spec file.
<li>Install the R kernel spec file.
</translate>{{Command2
</translate>{{Command2
Line 328: Line 387:
}}
}}
</li><translate>
</li><translate>
<!--T:77-->
<li>'''Important''': start or restart a new JupyterLab session before using the R kernel.</li>
<li>'''Important''': start or restart a new JupyterLab session before using the R kernel.</li>
</ol>
</ol>


<!--T:78-->
For more information, see the [https://irkernel.github.io/docs/ IRKernel documentation].
For more information, see the [https://irkernel.github.io/docs/ IRKernel documentation].


=== Installing more R packages ===
=== Installing more R packages === <!--T:79-->


<!--T:80-->
The installation of R packages cannot be done from notebooks because there is no access to CRAN.
The installation of R packages cannot be done from notebooks because there is no access to CRAN.
As in the above installation procedure, it is required to install R packages from a login node, but the Python virtual environment could be deactivated:
As in the above installation procedure, it is required to install R packages from a login node, but the Python virtual environment could be deactivated:


<!--T:81-->
<ol>
<ol>
<li>Make sure the same R module is loaded:
<li>Make sure the same R module is loaded:
Line 344: Line 407:
}}
}}
</li><translate>
</li><translate>
<!--T:82-->
<li>Start the R shell and install any required package. For example with <code>doParallel</code>:
<li>Start the R shell and install any required package. For example with <code>doParallel</code>:
</translate>{{Command2
</translate>{{Command2
Line 350: Line 414:
}}
}}
</li><translate>
</li><translate>
<!--T:83-->
<li>The newly installed R packages should already be usable in a notebook executed by the R kernel.</li>
<li>The newly installed R packages should already be usable in a notebook executed by the R kernel.</li>
</ol>
</ol>


= References =
= References = <!--T:84-->
</translate>
</translate>

Revision as of 16:24, 8 December 2021

Other languages:

Introduction[edit]

  • Project Jupyter: "a non-profit, open-source project, born out of the IPython Project in 2014 as it evolved to support interactive data science and scientific computing across all programming languages."[1]
  • JupyterLab: "a web-based interactive development environment for notebooks, code, and data. Its flexible interface allows users to configure and arrange workflows in data science, scientific computing, computational journalism, and machine learning. A modular design allows for extensions that expand and enrich functionality."[2]

A JupyterLab server should only run on a compute node or on a cloud instance; cluster login nodes are not a good choice because they impose various limits which can stop applications if they consume too much CPU time or memory. In the case of using a compute node, users can reserve compute resources by submitting a job that requests a specific number of CPUs (and optionally GPUs), an amount of memory and the run time. In this page, we give detailed instructions on how to configure and submit a JupyterLab job on any national cluster.

But, what about ...

  • Jupyter Notebook? JupyterLab is a more modern and flexible interface than the classic Jupyter Notebook
  • A preconfigured JupyterLab service? Some regional partners provide a web portal named JupyterHub. For instance, many of these portals offer a preconfigured JupyterLab service so that users do not have to create their own setup. To learn more, visit the JupyterHub wiki page

Installing JupyterLab[edit]

These instructions install JupyterLab with the pip command in a Python virtual environment:

  1. Load a Python module, either the default one (as shown below) or a specific version (see available versions with module avail python):
    [name@server ~]$ module load python
    
  2. Create a new Python virtual environment:
    [name@server ~]$ virtualenv --no-download $HOME/jupyter_py3
    
  3. Activate your newly created Python virtual environment:
    [name@server ~]$ source $HOME/jupyter_py3/bin/activate
    
  4. Install JupyterLab in your new virtual environment (note: it takes a few minutes):
    (jupyter_py3) [name@server ~]$ pip install --no-index jupyterlab
    
  5. In the virtual environment, create a wrapper script that launches JupyterLab:
    (jupyter_py3) [name@server ~]$ echo -e '#!/bin/bash\nunset XDG_RUNTIME_DIR\njupyter-lab --ip $(hostname -f) --no-browser' > $VIRTUAL_ENV/bin/jupyterlab.sh
    
  6. Finally, make the script executable:
    (jupyter_py3) [name@server ~]$ chmod u+x $VIRTUAL_ENV/bin/jupyterlab.sh
    

Installing extensions[edit]

Extensions allow you to add functionalities and modify the JupyterLab’s user interface.

Jupyter Lmod[edit]

Jupyter Lmod is an extension that allows you to interact with environment modules before launching kernels. The extension uses the Lmod's Python interface to accomplish module-related tasks like loading, unloading, saving a collection, etc.

The following commands will install and enable the Jupyter Lmod extension in your environment (note: the third command takes a few minutes to complete):

(jupyter_py3) [name@server ~]$ module load nodejs
(jupyter_py3) [name@server ~]$ pip install jupyterlmod
(jupyter_py3) [name@server ~]$ jupyter labextension install jupyterlab-lmod

Instructions on how to configure software modules in the JupyterLab interface are provided in the JupyterHub page.

Using your installation[edit]

Activating the environment[edit]

Make sure the Python virtual environment in which you have installed JupyterLab is activated.

For example, when you log into the cluster, you have to activate it again with:

[name@server ~]$ source $HOME/jupyter_py3/bin/activate

To verify that your environment is ready, you can get a list of installed jupyter* packages with the following command:

(jupyter_py3) [name@server ~]$ pip freeze | grep jupyter
jupyter-client==7.1.0+computecanada
jupyter-core==4.9.1+computecanada
jupyter-server==1.9.0+computecanada
jupyterlab==3.1.7+computecanada
jupyterlab-pygments==0.1.2+computecanada
jupyterlab-server==2.3.0+computecanada

Starting JupyterLab[edit]

To start a JupyterLab server, submit an interactive job with salloc. Adjust the parameters based on your needs. See Running jobs for more information.

(jupyter_py3) [name@server ~]$ salloc --time=1:0:0 --ntasks=1 --cpus-per-task=2 --mem-per-cpu=1024M --account=def-yourpi srun $VIRTUAL_ENV/bin/jupyterlab.sh
...
[I 2021-12-06 10:37:14.262 ServerApp] jupyterlab | extension was successfully linked.
...
[I 2021-12-06 10:37:39.259 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 2021-12-06 10:37:39.356 ServerApp]

    To access the server, open this file in a browser:
        file:///home/name/.local/share/jupyter/runtime/jpserver-198146-open.html
    Or copy and paste one of these URLs:
        http://node_name.int.cluster.computecanada.ca:8888/lab?token=101c3688298e78ab554ef86d93a196deaf5bcd2728fad4eb
     or http://127.0.0.1:8888/lab?token=101c3688298e78ab554ef86d93a196deaf5bcd2728fad4eb

Connecting to JupyterLab[edit]

To access JupyterLab running on a compute node from your web browser, you will need to create an SSH tunnel from your computer through the cluster since the compute nodes are not directly accessible from the Internet.

From Linux or macOS[edit]

On a Linux or macOS system, we recommend using the sshuttle Python package.

On your computer, open a new terminal window and create the SSH tunnel with the following sshuttle command where <username> must be substituted by your Compute Canada username, and <cluster> by the cluster on which you have launched JupyterLab:

[name@local ~]$ sshuttle --dns -Nr <username>@<cluster>.computecanada.ca

Then, copy and paste the first provided HTTP address into your Web browser. In the above salloc example, this would be:

http://node_name.int.cluster.computecanada.ca:8888/lab?token=101c3688298e78ab554ef86d93a196deaf5bcd2728fad4eb

From Windows[edit]

An SSH tunnel can be created from Windows using MobaXTerm as follows. Note: this procedure also works from a terminal in any Unix system (like Linux, macOS, etc).

  1. Once JupyterLab is launched on a compute node (see Starting JupyterLab), you can extract the hostname:port and the token from the first provided HTTP address. For example:
    http://node_name.int.cluster.computecanada.ca:8888/lab?token=101c368829...2728fad4eb
           └────────────────────┬────────────────────┘           └──────────┬──────────┘
                          hostname:port                                   token
    
  2. Open a new Terminal tab in MobaXTerm. In the following command, substitute <hostname:port> by its corresponding value (refer to the above figure), substitute <username> by your Compute Canada username, and substitute <cluster> by the cluster on which you have launched JupyterLab:
    [name@local ~]$ ssh -L 8888:<hostname:port> <username>@<cluster>.computecanada.ca
    
  3. Open your Web browser and go to the following address where <token> must be substituted by the alphanumerical value extracted from the above figure:
    http://localhost:8888/?token=<token>
    

Shutting down JupyterLab[edit]

You can shut down the JupyterLab server before the walltime limit by pressing Ctrl-C twice in the terminal that launched the interactive job.

If you have used MobaXterm to create an SSH tunnel, press Ctrl-D to shut down the tunnel.

Adding kernels[edit]

It is possible to add kernels for other programming languages, for a different Python version or for a persistent virtual environment that has all required packages and libraries for your project. Refer to Making kernels for Jupyter to learn more.

The installation of a new kernel is done in two steps:

  1. Installation of the packages that will allow the language interpreter to communicate with the Jupyter interface.
  2. Creation of a file that will indicate to JupyterLab how to initiate a communication channel with the language interpreter. This file is called a kernel spec file, and it will be saved in a sub-folder of ~/.local/share/jupyter/kernels.

In the following sections, we provide a few examples of the kernel installation procedure.

Julia Kernel[edit]

Prerequisites:

  1. The configuration of a Julia kernel depends on a Python virtual environment that already has all the Python Kernel dependencies. If you do not have such virtual environment, make sure to follow instructions listed in the next section.
  2. Since the installation of Julia packages requires an access to Internet, the configuration of a Julia kernel must be done in a remote shell session on a login node.

Once you have a Python virtual environment available and activated, you may configure the Julia kernel:

  1. Load the Julia module:
    (jupyter_py3) [name@server ~]$ module load julia
    
  2. Install IJulia:
    (jupyter_py3) [name@server ~]$ echo -e 'using Pkg\nPkg.add("IJulia")' | julia
    
  3. Important: start or restart a new JupyterLab session before using the Julia kernel.

For more information, see the IJulia documentation.

Installing more Julia packages[edit]

As in the above installation procedure, it is required to install Julia packages from a login node, but the Python virtual environment could be deactivated:

  1. Make sure the same Julia module is loaded:
    [name@server ~]$ module load julia
    
  2. Install any required package. For example with Glob:
    [name@server ~]$ echo -e 'using Pkg\nPkg.add("Glob")' | julia
    
  3. The newly installed Julia packages should already be usable in a notebook executed by the Julia kernel.

Python Kernel[edit]

In a terminal with an active session on the remote server, you may configure a Python virtual environment with all the required Python modules and a custom Python kernel for JupyterLab. Here are the initial steps for the simplest Jupyter configuration in a new Python virtual environment:

  1. If you do not have a Python virtual environment for Jupyter, create one. Then, activate it:
    1. Start from a clean Bash environment (this is only required if you are using the Jupyter Terminal via JupyterHub for the creation and configuration of the Python kernel):
      [name@server ~]$ env -i HOME=$HOME bash -l
      
    2. Load a Python module:
      [name@server ~]$ module load python
      
    3. Create a new Python virtual environment:
      [name@server ~]$ virtualenv --no-download $HOME/jupyter_py3
      
    4. Activate your newly created Python virtual environment:
      [name@server ~]$ source $HOME/jupyter_py3/bin/activate
      
  2. Install the ipykernel library:
    (jupyter_py3) [name@server ~]$ pip install --no-index ipykernel
    
  3. Create the common kernels folder:
    (jupyter_py3) [name@server ~]$ mkdir -p ~/.local/share/jupyter/kernels
    
  4. Generate the kernel spec file. Substitute <unique_name> by a name that will uniquely identify your kernel:
    (jupyter_py3) [name@server ~]$ python -m ipykernel install --user --name <unique_name> --display-name "Python 3.x Kernel"
    
  5. Important: start or restart a new JupyterLab session before using the Python kernel.

For more information, see the ipykernel documentation.

Installing more Python libraries[edit]

Based on the Python virtual environment configured in the previous section:

  1. If you are using the Jupyter Terminal via JupyterHub, make sure the activated Python virtual environment is running in a clean Bash environment. See the above section for details.
  2. Install any required library. For example, numpy:
    (jupyter_py3) [name@server ~]$ pip install --no-index numpy
    
  3. The newly installed Python libraries can now be imported in any notebook using the Python 3.x Kernel.

R Kernel[edit]

Prerequisites:

  1. Configuring an R kernel still depends on a Python virtual environment that already has all the Python Kernel dependencies. If you do not have such virtual environment, make sure to follow instructions listed in the previous section.
  2. Since the installation of R packages requires an access to CRAN, the configuration of an R kernel must be done in a remote shell session on a login node.

Once you have a Python virtual environment available and activated, you may configure the R kernel:

  1. Load an R module:
    (jupyter_py3) [name@server ~]$ module load r/4.1
    
  2. Install the R kernel dependencies (crayon, pbdZMQ, devtools) - this will take up to 10 minutes, and packages should be installed in a local directory like ~/R/x86_64-pc-linux-gnu-library/4.1:
    (jupyter_py3) [name@server ~]$ R --no-save
    > install.packages(c('crayon', 'pbdZMQ', 'devtools'), repos='http://cran.us.r-project.org')
    
  3. Install the R kernel.
    > devtools::install_github(paste0('IRkernel/', c('repr', 'IRdisplay', 'IRkernel')))
    
  4. Install the R kernel spec file.
    > IRkernel::installspec()
    
  5. Important: start or restart a new JupyterLab session before using the R kernel.

For more information, see the IRKernel documentation.

Installing more R packages[edit]

The installation of R packages cannot be done from notebooks because there is no access to CRAN. As in the above installation procedure, it is required to install R packages from a login node, but the Python virtual environment could be deactivated:

  1. Make sure the same R module is loaded:
    [name@server ~]$ module load r/4.1
    
  2. Start the R shell and install any required package. For example with doParallel:
    [name@server ~]$ R --no-save
    > install.packages('doParallel', repos='http://cran.us.r-project.org')
    
  3. The newly installed R packages should already be usable in a notebook executed by the R kernel.

References[edit]