Ray: Difference between revisions
Line 276: | Line 276: | ||
args = parser.parse_args() | args = parser.parse_args() | ||
## Connect to the Ray cluster launched in the job submission script | |||
ray.init(address=f"{os.environ['HEAD_NODE']}:{os.environ['RAY_PORT']}",_node_ip_address=os.environ['HEAD_NODE']) | ray.init(address=f"{os.environ['HEAD_NODE']}:{os.environ['RAY_PORT']}",_node_ip_address=os.environ['HEAD_NODE']) | ||
## Define a search space for the sweep | |||
config = { | config = { | ||
"lr": tune.loguniform(1e-4, 1e-1), # candidate learning rates will be sampled from a log-uniform distrubution | "lr": tune.loguniform(1e-4, 1e-1), # candidate learning rates will be sampled from a log-uniform distrubution |
Latest revision as of 12:22, 13 March 2023
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries for simplifying running parallel/distributed workloads, in particular Machine Learning jobs.
Installation
Latest available wheels
To see the latest version of Ray that we have built:
[name@server ~]$ avail_wheels "ray"
For more information, see Available wheels.
Installing our wheel
The preferred option is to install it using the Python wheel as follows:
- 1. Load a Python module, thus module load python
- 2. Create and start a virtual environment.
- 3. Install Ray in the virtual environment with
pip install
.
-
(venv) [name@server ~] pip install --no-index ray
Job submission
Single Node
Below is an example of a job that spawns a single-node Ray cluster with 6 cpus and 1 GPU.
#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --gpus-per-task=1
#SBATCH --cpus-per-task=6
#SBATCH --mem=32000M
#SBATCH --time=0-00:05
#SBATCH --output=%N-%j.out
export HEAD_NODE=$(hostname) # store head node's address
export RAY_PORT=34567 # choose a port to start Ray on the head node
module load python gcc/9.3.0 arrow
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install ray --no-index
# Launch single-node ray cluster as a background process: only node is the head node!
ray start --head --node-ip-address=$HEAD_NODE --port=$RAY_PORT --num-cpus=$SLURM_CPUS_PER_TASK --num-gpus=1 --block &
sleep 10
python ray-example.py
In this simple example, we connect to the single-node Ray cluster launched in the job submission script, then we check that Ray sees the resources allocated to the job.
import ray
import os
# Connect to Ray cluster
ray.init(address=f"{os.environ['HEAD_NODE']}:{os.environ['RAY_PORT']}",_node_ip_address=os.environ['HEAD_NODE'])
# Check that ray can see 6 cpus and 1 GPU
print(ray.available_resources())
Multiple Nodes
In the example that follows, we submit a job that spawns a two-node Ray cluster with 6 cpus and 1 GPU per node.
#!/bin/bash
#SBATCH --nodes 2
#SBATCH --ntasks-per-node=1
#SBATCH --gpus-per-task=1
#SBATCH --cpus-per-task=6
#SBATCH --mem=32000M
#SBATCH --time=0-00:10
#SBATCH --output=%N-%j.out
## Create a virtualenv and install Ray on all nodes ##
srun -N $SLURM_NNODES -n $SLURM_NNODES config_env.sh
export HEAD_NODE=$(hostname) # store head node's address
export RAY_PORT=34567 # choose a port to start Ray on the head node
source $SLURM_TMPDIR/ENV/bin/activate
## Start Ray cluster Head Node ##
ray start --head --node-ip-address=$HEAD_NODE --port=$RAY_PORT --num-cpus=$SLURM_CPUS_PER_TASK --num-gpus=1 --block &
sleep 10
## Launch worker nodes on all the other nodes allocated by the job ##
srun launch_ray.sh &
ray_cluster_pid=$!
python test_ray.py
## Shut down Ray worker nodes after the Python script exits ##
kill $ray_cluster_pid
Where the script config_env.sh
is:
#!/bin/bash
module load python
virtualenv --no-download $SLURM_TMPDIR/ENV
source $SLURM_TMPDIR/ENV/bin/activate
pip install --upgrade pip --no-index
pip install ray --no-index
And the script launch_ray.sh
is:
#!/bin/bash
source $SLURM_TMPDIR/ENV/bin/activate
module load gcc/9.3.0 arrow
if [[ "$SLURM_PROCID" -eq "0" ]]; then
echo "Ray head node already started..."
sleep 10
else
ray start --address "${HEAD_NODE}:${RAY_PORT}" --num-cpus="${SLURM_CPUS_PER_TASK}" --num-gpus=1 --block
sleep 5
echo "ray worker started!"
fi
In this simple example, we connect to the two-node Ray cluster launched in the job submission script, then we check that Ray sees the resources allocated to the job.
import ray
import os
# Connect to Ray cluster
ray.init(address=f"{os.environ['HEAD_NODE']}:{os.environ['RAY_PORT']}",_node_ip_address=os.environ['HEAD_NODE'])
# Check that Ray sees two nodes and their status is 'Alive'
print("Nodes in the Ray cluster:")
print(ray.nodes())
# Check that Ray sees 12 CPUs and 2 GPUs over 2 Nodes
print(ray.available_resources())
Hyperparameter search with Ray Tune
Tune is a Ray module for experiment execution and hyperparameter tuning at any scale. It supports a wide range of frameworks including Pytorch, Tensorflow and Scikit-Learn. In the example that follows, we use Tune to perform a hyperparameter sweep and find the best combination of learning rate and batch size to train a convolutional neural network with Pytorch. You can find examples using other frameworks on Ray's official documentation
To run this example, you can use one of the job submission templates provided above depending on whether you require one or multiple nodes. As you will see in the code that follows, the amount of resources required by your job will depend mainly on two factors: the number of samples you wish to draw from the search space and the size of your model in memory. Knowing these two things you can reason about how many trials you will run in total and how many of them can run in parallel using as few resources as possible. For example, how many copies of your model can you fit inside the memory of a single GPU? That is the number of trials you can run in parallel using just one GPU.
In the example, our model takes up about 1GB in memory. We will run 20 trials in total, 10 in parallel at a time on the same GPU, and we will give one CPU to each trial to be used as a DataLoader
worker. So we will pick the single node job submission template and we will replace the number of cpus per task with #SBATCH --cpus-per-task=10
and the Python call with python ray-tune-example.py --num_samples=20 --cpus-per-trial=1 gpus-per-trial=0.1
. We will also need to install the packages ray[tune]
and torchvision
in our virtualenv.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import ray
from ray import tune
from ray.air import session
from ray.air.checkpoint import Checkpoint
from ray.tune.schedulers import ASHAScheduler
import os
import argparse
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def train(config,num_workers):
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = CIFAR10(root='/path/to/data', train=True, download=False, transform=transform)
dataset_test = CIFAR10(root='/path/to/test_data', train=False, download=False, transform=transform)
net = Net().cuda() # Load model on the GPU
train_loader = DataLoader(dataset_train, batch_size=config["batch_size"], num_workers=num_workers)
test_loader = DataLoader(dataset_test, batch_size=config["batch_size"], num_workers=num_workers)
criterion = nn.CrossEntropyLoss().cuda() # Load the loss function on the GPU
optimizer = optim.SGD(net.parameters(), lr=config["lr"])
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs = inputs.cuda()
targets = targets.cuda()
outputs = net(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total = 0
correct = 0
for batch_idx, (inputs, tagrets) in enumerate(test_loader):
with torch.no_grad():
inputs = inputs.cuda()
targets = targets.cuda()
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += (predicted == targets).sum().item()
session.report({"accuracy": correct / total})
parser = argparse.ArgumentParser(description='cifar10 hyperparameter sweep with ray tune')
parser.add_argument('--num_samples',type=int, default=10, help='')
parser.add_argument('--gpus_per_trial', type=float, default=1, help='')
parser.add_argument('--cpus_per_trial', type=int, default=1, help='')
def main():
args = parser.parse_args()
## Connect to the Ray cluster launched in the job submission script
ray.init(address=f"{os.environ['HEAD_NODE']}:{os.environ['RAY_PORT']}",_node_ip_address=os.environ['HEAD_NODE'])
## Define a search space for the sweep
config = {
"lr": tune.loguniform(1e-4, 1e-1), # candidate learning rates will be sampled from a log-uniform distrubution
"batch_size": tune.choice([2, 4, 8, 16]) # candidate batch sizes will be sampled randomly from this list of values
}
## Our training loop only runs for one epoch. But if it ran for many epochs, a scheduler can kill trials before they end if they do not look promising
scheduler = ASHAScheduler(
max_t=1,
grace_period=1,
reduction_factor=2)
tuner = tune.Tuner(
tune.with_resources(
tune.with_parameters(train, num_workers=args.cpus_per_trial),
resources={"cpu": args.cpus_per_trial, "gpu": args.gpus_per_trial} # we set gpus_per_trial to 0.1, so each trial gets one tenth of a GPU
),
tune_config=tune.TuneConfig(
metric="accuracy",
mode="max",
scheduler=scheduler,
num_samples=args.num_samples,
),
param_space=config,
)
results = tuner.fit()
best = results.get_best_result("accuracy","max")
print("Best trial config: {}".format(best.config))
if __name__=='__main__':
main()