Translations:Computational chemistry/11/en: Difference between revisions
Jump to navigation
Jump to search
(Importing a new version from external source) |
(Importing a new version from external source) |
||
Line 1: | Line 1: | ||
Molecular dynamics calculations are extremely useful in the study of biological systems. Please see the [[Biomolecular simulation]] page for a list of the resources relevant to this area of research, but bear in mind that the distinction is artificial and many tools are applicable to both biological and non-biological systems. They can be used to simulate glasses, metals, liquids, supercooled liquids, granular materials, complex materials, etc. | Molecular dynamics calculations are extremely useful in the study of biological systems. Please see the [[Biomolecular simulation]] page for a list of the resources relevant to this area of research, but bear in mind that the distinction is artificial and many tools are applicable to both biological and non-biological systems. They can be used to simulate glasses, metals, liquids, supercooled liquids, granular materials, complex materials, etc. |
Latest revision as of 21:52, 1 February 2018
Molecular dynamics calculations are extremely useful in the study of biological systems. Please see the Biomolecular simulation page for a list of the resources relevant to this area of research, but bear in mind that the distinction is artificial and many tools are applicable to both biological and non-biological systems. They can be used to simulate glasses, metals, liquids, supercooled liquids, granular materials, complex materials, etc.