Abaqus
Abaqus FEA is a software suite for finite element analysis and computer-aided engineering.
Using your own license
Abaqus is available on Compute Canada clusters, but you must provide your own license. To configure your cluster account, create a file named $HOME/.licenses/abaqus.lic with the following two lines which support versions 2020 and 6.14.1 respectively. This must be done on each cluster where you plan to run abaqus as follows:
prepend_path("LM_LICENSE_FILE","port@server")
prepend_path("ABAQUSLM_LICENSE_FILE","port@server")
Replace port@server
with the port number and name of your Abaqus license server. Your license server must be reachable by our compute nodes, so your firewall will need to be configured appropriately. This usually requires our technical team to get in touch with the technical people managing your license software. Please contact our technical support and we will provide a list of IP addresses used by our clusters and obtain the information we need on the port and IP address of your server.
Online Documentation
The full ABAQUS documentation (latest version) can be accessed on gra-vdi as shown in the following steps.
Account Preparation:
- connect to gra-vdi.computecanada.ca with tigervnc as described in VDI Nodes
- open a terminal window on gra-vdi and type
firefox
(hit enter) - in the address bar type
about:config
(hit enter) -> click the Accept the risk button - in the search bar type
uniqe
then double clickprivacy.file_unique_origin
to change true to false
View Documentation:
- connect to gra-vdi.computecanada.ca with tigervnc as described in VDI Nodes
- open a terminal window on gra-vdi and type
firefox
(hit enter) - in the search bar copy paste
file:///opt/sharcnet/abaqus/2020/doc/English/DSSIMULIA_Established.htm
- find a topic by clicking for example: Abaqus -> Analysis -> Analysis Techniques -> Analysis Continuation Techniques
Cluster job submission
Below are sample slurm scripts to submitting parallel a 4core simulations to a single compute node using command sbatch scriptname.sh
. The optional "memory= " argument in the abaqus commend is intended for larger memory or problematic jobs and may require tuning of the 3072MB default value. A listing of all abaqus command line arguments can be obtained by loading an abaqus module and running: abaqus -help | less
. Users with job that run more than a day may consider implementing a restart job script as shown in the below tabs. Jobs that created large restart files may benefit from writing to local disc through the use of SLURM_TMPDIR as shown in the two right mosts tab for both standard and explicit analysis. For regular jobs that run less than a day, the script in the left most tab of the standard and explicit analysis (implemented with the writing of restart files disabled) should be sufficient. The restart slurm scripts shown here are provided to continue jobs that have been interupted and thus terminated early for some reason. Such job failures can occur if a job reaches its maximum requested runtime before completing and is killed by the queue or if the compute node the job was running on crashed due to an unexpected hardware failure. Other restart types are possible by further tailoring of the input file (not shown here) to either continue a job with additional steps or change an analysis.
Standard Analysis
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
rm -f testsp1* testsp2*
abaqus job=testsp1 input=mystd-sim.inp \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
To write restart date every N=12 time increments and at the end of each step of the analysis: *RESTART, WRITE, FREQUENCY=12 To disable writing restart data (into res,mdl,stt files) instead specify: *RESTART, WRITE, FREQUENCY=0 To check the completed restart information do: cat testsp1.msg | grep "STARTS\|COMPLETED\|WRITTEN"
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
rm -f testsp2*
abaqus job=testsp2 oldjob=testsp1 input=mystd-sim-restart.inp \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
To read input file, input file should contain: *RESTART, READ
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
echo "SLURM_SUBMIT_DIR =" $SLURM_SUBMIT_DIR
echo "SLURM_TMPDIR = " $SLURM_TMPDIR
rm -f test1st* test2st*
cd $SLURM_TMPDIR
while sleep 6h; do
cp -f * $SLURM_SUBMIT_DIR
done &
WPID=$!
abaqus job=testst1 input=$SLURM_SUBMIT_DIR/mystd-sim.inp \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
kill $WPID
cp -f * $SLURM_SUBMIT_DIR
To write restart date every N=12 time increments and at the end of each step of the analysis: *RESTART, WRITE, FREQUENCY=12 To disable writing restart data (into res,mdl,stt files) instead specify: *RESTART, WRITE, FREQUENCY=0 To check the completed restart information do: cat testst1.msg | grep "STARTS\|COMPLETED\|WRITTEN"
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
echo "SLURM_SUBMIT_DIR =" $SLURM_SUBMIT_DIR
echo "SLURM_TMPDIR = " $SLURM_TMPDIR
rm -f testst2*
cp testst1* $SLURM_TMPDIR
cd $SLURM_TMPDIR
while sleep 3h; do
cp -f testst2* $SLURM_SUBMIT_DIR
done &
WHILEPID=$!
abaqus job=testst2 oldjob=testst1 input=$SLURM_SUBMIT_DIR/mystd-sim-restart.inp \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
kill $WPID
cp -f testst2* $SLURM_SUBMIT_DIR
To read restart file, input file should contain: *RESTART, READ
Explicit Analysis
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
rm -f testep1* testep2*
abaqus job=testep1 input=myexp-sim.inp \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
To write restart output at n=12 time intervals (at the beginning of the step and at increments ending immediately after each time interval) your input file should contain: *RESTART, WRITE, NUMBER INTERVAL=12, TIME MARKS=NO To disable writing restart output (into the abq and sta files) instead specify: *RESTART, WRITE, NUMBER INTERVAL=0 To check the completed restart information do: cat testep1.sta | grep Restart
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
rm -f testep2*
for f in testep1*; do [[ -f ${f} ]] && cp -a "$f" "testep2${f#testep1}"; done
abaqus job=testep2 input=myexp-sim-restart.inp recover \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
No input file modifications are required to restart the analysis.
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
echo "SLURM_SUBMIT_DIR =" $SLURM_SUBMIT_DIR
echo "SLURM_TMPDIR = " $SLURM_TMPDIR
rm -f testet1* testet2*
cd $SLURM_TMPDIR
while sleep 6h; do
cp -f * $SLURM_SUBMIT_DIR
done &
WPID=$!
abaqus job=testet1 input=$SLURM_SUBMIT_DIR/myexp-sim.inp \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
kill $WPID
cp -f * $SLURM_SUBMIT_DIR
To write restart output at n=12 time intervals (at the beginning of the step and at increments ending immediately after each time interval) your input file should contain: *RESTART, WRITE, NUMBER INTERVAL=12, TIME MARKS=NO To disable writing restart output (into the abq and sta files) instead specify: *RESTART, WRITE, NUMBER INTERVAL=0 To check the completed restart information do: cat testet1.sta | grep Restart
#!/bin/bash
#SBATCH --account=def-group # specify account
#SBATCH --time=00-06:00 # days-hrs:mins
#SBATCH --mem=8G # node memory > 5G
#SBATCH --cpus-per-task=4 # number cores > 1
module load abaqus/2020
unset SLURM_GTIDS
export MPI_IC_ORDER='tcp'
echo "LM_LICENSE_FILE=$LM_LICENSE_FILE"
echo "ABAQUSLM_LICENSE_FILE=$ABAQUSLM_LICENSE_FILE"
echo "SLURM_SUBMIT_DIR =" $SLURM_SUBMIT_DIR
echo "SLURM_TMPDIR = " $SLURM_TMPDIR
rm -f testet2*
for f in testet1*; do cp -a "$f" $SLURM_TMPDIR/"testet2${f#testet1}"; done
cd $SLURM_TMPDIR
while sleep 3h; do
cp -f * $SLURM_SUBMIT_DIR
done &
WPID=$!
abaqus job=testet2 input=$SLURM_SUBMIT_DIR/myexp-sim-restart.inp recover \
scratch=$SCRATCH cpus=$SLURM_CPUS_ON_NODE interactive \
mp_mode=threads memory="$((${SLURM_MEM_PER_NODE}-3072))MB"
kill $WPID
cp -f * $SLURM_SUBMIT_DIR
No input file modifications are required to restart the analysis.
Node memory
An estimate for the total slurm node memory (--mem=) required for a simulation to run fully in ram (without being virtualized to scratch disk) can be obtained by examining the abaqus output test.dat
file. For example a simulation that requires a fairly large amount of memory might show:
M E M O R Y E S T I M A T E
PROCESS FLOATING PT MINIMUM MEMORY MEMORY TO
OPERATIONS REQUIRED MINIMIZE I/O
PER ITERATION (MB) (MB)
1 1.89E+14 3612 96345
To run your simulation interactively and monitor the memory consumption do the following:
1) ssh into a compute canada cluster, obtain an allocation on a compute node (such as gra100), run abaqus ie)
salloc --time=0:30:00 --cpus-per-task=8 --mem=64G --account=def-piname
module load abaqus/6.14.1 OR module load abaqus/2020
unset SLURM_GTIDS
abaqus job=test input=Sample.inp scratch=$SCRATCH cpus=8 mp_mode=threads interactive
2) ssh into the compute canada cluster again, ssh into the compute node with the allocation, run top ie)
ssh gra100
top -u $USER
3) watch the VIRT and RES columns until steady peak memory values are observed
To completely satisfy the recommended "MEMORY TO OPERATIONS REQUIRED MINIMIZE I/O" (MRMIO) value at least the same smount of non-swapped physical memory (RES) must be available to abaqus. Since the RES will in general be less than the virtual memory (VIRT) by some relatively constant amount for a given simulation, it is necessary to slightly over allocate the requested slurm node memory -mem=
. In the above sample slurm script this over-allocation has been hardcoded to a conservative value of 3072MB based on initial testing of the standard abaqus solver. To avoid long queue wait times associated with large values of MRMIO, it maybe worth investigating the simulation performance impact associated with reducing the RES memory that is made available to abaqus significantly below the MRMIO. This can be done by lowering the -mem=
value which in turn will set an artificially low value of memory=
in the abaqus command (found in the last line of the slurm script). In doing this one should be careful the RES does not dip below the "MINIMUM MEMORY REQUIRED" (MMR) otherwise abaqus will exit due to "Out Of Memory" (OOM). As an example, if your MRMIO is 96GB try running a series of short test jobs with #SBATCH --mem=8G, 16G, 32G, 64G
until an acceptable minimal performance impact is found, noting that smaller values will result in increasingly larger scratch space use by tmpdir files.
Graphical use
Abaqus/2020 can be run interactively in graphical mode on a cluster or gra-vdi using VNC by following these steps:
On a cluster
- Connect to a compute node (3hr time limit) with TigerVNC
module load abaqus/2020
abaqus cae -mesa
On gra-vdi
- Connect to gra-vdi (no time limit) with TigerVNC
module load SnEnv
module load abaqus/2020
abaqus cae
o How to check license availability
There must be be at least 1 license not in use for abaqus cae
to start according to:
abaqus licensing lmstat -c $ABAQUSLM_LICENSE_FILE -a | grep "Users of cae"
For example, the SHARCNET license has 2 free and 2 reserved licenses. If all 4 are in use the following error message will occur:
[gra-vdi3:~] abaqus licensing lmstat -c $ABAQUSLM_LICENSE_FILE -a | grep "Users of cae"
Users of cae: (Total of 4 licenses issued; Total of 4 licenses in use)
[gra-vdi3:~] abaqus cae
ABAQUSLM_LICENSE_FILE=27050@license3.sharcnet.ca
/opt/sharcnet/abaqus/2020/Commands/abaqus cae
No socket connection to license server manager.
Feature: cae
License path: 27050@license3.sharcnet.ca:
FLEXnet Licensing error:-7,96
For further information, refer to the FLEXnet Licensing documentation,
or contact your local Abaqus representative.
Number of requested licenses: 1
Number of total licenses: 4
Number of licenses in use: 2
Number of available licenses: 2
Abaqus Error: Abaqus/CAE Kernel exited with an error.
Site specific use
Sharcnet license
Sharcnet provides a small but free license consisting of 2cae and 21 execute tokens where usage limits are imposed 10 tokens/user and 15 tokens/group. For groups that have purchased dedicated tokens the free token usage limits are added to their reservation. The free tokens are available on a first come first serve basis and mainly intended for testing and light usage before deciding whether or not to purchase dedicated tokens. The costs for dedicated tokens in cdn are approximately 110 per compute token and 400 per gui token, submit a ticket to request an official quote. The license can be used by any Compute Canada member but only on SHARCNET hardware. Groups that purchase dedicated tokens to run on the SHARCNET license server may likewise only use them on SHARCNET hardware. Such hardware includes gra-vdi for running abaqus in full graphical mode and graham cluster for submitting compute batch jobs to the queue. Before you can use the license you must open ticket at <support@computecanada.ca> and request access. In your email 1) mention that it is for use on Sharcnet systems and 2) include a copy/paste of the following License Agreement statement with your full name and Compute Canada username entered in the indicated locations. Please note that every user must do this ie) cannot be done one time only for a group (including PIs who have purchased their own dedicated tokens).
o License agreement
---------------------------------------------------------------------------------- Subject: Abaqus Sharcnet Academic License User Agreement This email is to confirm that i "_____________" with username "___________" will only use “SIMULIA Academic Software” with tokens from the SHARCNET license server for the following purposes: 1) on SHARCNET hardware where the software is already installed 2) in affiliation with a canadian degree-granting academic institution 3) for education, institutional or instruction purposes and not for any commercial or contract related purposes where results are not publishable 4) for experimental, theoretical and/or digital research work, undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts, up to the point of proof-of-concept in a laboratory -----------------------------------------------------------------------------------
o Configure license file
Configure your license file as follows, noting that it is only usable on SHARCNET systems: graham, gra-vdi and dusky.
[gra-login1:~] cat ~/.licenses/abaqus.lic
prepend_path("LM_LICENSE_FILE","27050@license3.sharcnet.ca")
prepend_path("ABAQUSLM_LICENSE_FILE","27050@license3.sharcnet.ca")
If your abaqus jobs fail with error message [*** ABAQUS/eliT_CheckLicense rank 0 terminated by signal 11 (Segmentation fault)] in the slurm output file verify your abaqus.lic
file contains ABAQUSLM_LICENSE_FILE to use abaqus/2020. If your abaqus jobs fail with error message starting [License server machine is down or not responding etc] in the output file verify your abaqus.lic
file contains LM_LICENSE_FILE to use abaqus/6.14.1 as shown. The abaqus.lic
file shown contains both so you should not see this problem.
o Query license server
I) To check the Sharcnet license server for started and queued jobs by username run:
ssh graham.computecanada.ca
module load abaqus
abaqus licensing lmstat -c $LM_LICENSE_FILE -a | grep "Users\|start\|queued\|RESERVATIONs"
II) To check the Sharcnet license server for reservations of products by purchasing groups run:
ssh graham.computecanada.ca
module load abaqus
abaqus licensing lmstat -c $LM_LICENSE_FILE -a | grep "Users\|RESERVATIONs"
III) To check the Sharcnet license server for license usage of the cae, standard and explicit products run:
ssh graham.computecanada.ca
module load abaqus
abaqus licensing lmstat -c $LM_LICENSE_FILE -a | grep "Users of" | grep "cae\|standard\|explicit"
When the output of query I) above indicatesa that a job for a particular username is "queued" this means the job has entered the "R"unning state from the perspective of squeue -j jobid
or sacct -j jobid
and is therefore idle on a compute node waiting for a license. This will have the same impact on your account priority as if the job were performing computations and consuming cputime. Eventually when sufficient licenses come available the "queued" job will "start". To demonstrate, he following shows the license server and queue output for the situation where a user submits two jobs, but only the first job acquires enough licenses to start:
[roberpj@dus241:~] squeue -u roberpj JOBID USER ACCOUNT NAME ST TIME_LEFT NODES CPUS GRES MIN_MEM NODELIST (REASON) 29801 roberpj def-roberpj_ scriptep1.txt R 2:59:18 1 12 (null) 8G dus47 (None) 29802 roberpj def-roberpj_ scriptsp1.txt R 2:59:33 1 12 (null) 8G dus28 (None)
[roberpj@dus241:~] abaqus licensing lmstat -c $LM_LICENSE_FILE -a | grep "Users\|start\|queued\|RESERVATIONs" Users of abaqus: (Total of 78 licenses issued; Total of 71 licenses in use) roberpj dus47 /dev/tty (v62.2) (license3.sharcnet.ca/27050 275), start Thu 8/27 5:45, 14 licenses roberpj dus28 /dev/tty (v62.2) (license3.sharcnet.ca/27050 729) queued for 14 licenses
o Specify job resources
To ensure optimal usage of both your Abaqus tokens and the Compute Canada resources its important to carefully specify the required memory and ncpus in your slurm script. The values can be determined by submitting a few short test jobs to the queue then checking their utilization. For completed jobs use seff JobNumber
to show the total "Memory Utilized" and "Memory Efficiency"; If the "Memory Efficiency" is less than ~90% decrease the value of "#SBATCH --mem=" setting in your slurm script accordingly. Notice that the seff JobNumber
command also shows the total "CPU (time) Utilized" and "CPU Efficiency"; If the "CPU Efficiency" is less than ~90% perform scaling tests to determine the optimal number of cpu's for optimal performance and then update the value of then update the value of "#SBATCH --cpus-per-task=" in your slurm script. For running jobs use the srun --jobid=29821580 --pty top -d 5 -u $USER
command to watch the %CPU, %MEM and RES for each abaqus parent process on the compute node; The %CPU and %MEM columns display the percent usage relative to the total available on the node while the RES column shows the per process resident memory size (in human readable format for values over 1gb). Further information regarding howto Monitor Jobs is available in the Compute Canada wiki.
o Core token mapping
TOKENS 5 6 7 8 10 12 14 16 19 21 25 28 34 38 CORES 1 2 3 4 6 8 12 16 24 32 48 64 96 128
where TOKENS = floor[5 X CORES^0.422]
Western license
The Western site license may only be used by Western researchers on hardware located at Western's campus. Currently Dusky cluster is the only system that satisfies these conditions. Graham and gra-vdi are excluded since they are located on Waterloo's campus. Contact the Western abaqus license server administrator <jmilner@robarts.ca> to inquire about using the Western abaqus license. You will need to provide your Compute Canada username and possibly make arrangements to purchase tokens. If you are granted access then you may proceed to configure your abaqus.lic
file to point to the Western license server as follows:
o Configure license file
Configure your license file as follows, noting that it is only usable on dusky.
[dus241:~] cat .licenses/abaqus.lic
prepend_path("LM_LICENSE_FILE","27000@license4.sharcnet.ca")
prepend_path("ABAQUSLM_LICENSE_FILE","27000@license4.sharcnet.ca")
Once configured, submit your jobd as described above in the Cluster job submission section. If there are any problems submit a problem ticket to technical support. Specify that you are using the abaqus Western license on dusky as well as the failed job number along with a paste of any error message if applicable.