Weights & Biases (wandb)

From Alliance Doc
Revision as of 21:47, 14 January 2021 by Lucasn1 (talk | contribs) (→‎Example)
Jump to navigation Jump to search

Weights & Biases (wandb) is a "meta machine learning platform" designed to help AI practitioners and teams build reliable machine learning models for real-world applications by streamlining the machine learning model lifecycle. By using wandb, users can track, compare, explain and reproduce their machine learning experiments.

Using wandb on Compute Canada clusters

Availability

Since it requires an internet connection, wandb has restricted availability on compute nodes, depending on the cluster:


Cluster Availability Note
Béluga Yes ✅ wandb can be used after loading the httpproxy module: module load httpproxy
Cedar Yes ✅ Internet access is enabled
Graham No ❌ Internet access is disabled on compute nodes

Example

The following is an example of how to use wandb to track experiments on Béluga. To reproduce this on Cedar, it is not necessary to load the module httpproxy.


File : wandb-test.sh

#!/bin/bash
#SBATCH --cpus-per-task=1 
#SBATCH --mem=2G       
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out


module load python/3.6 httpproxy
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torch wandb --no-index


### Save your wandb API key in your .bash_profile or replace $API_KEY with your actual API key: 

wandb login $API_KEY 

python wandb-test.py


The script wandb-test.py uses the watch() method to log default metrics to Weights & Biases. See their full documentation for more options.


File : wandb-test.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn

import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader

import argparse

import wandb


parser = argparse.ArgumentParser(description='cifar10 classification models, wandb test')
parser.add_argument('--lr', default=0.1, help='')
parser.add_argument('--batch_size', type=int, default=768, help='')
parser.add_argument('--max_epochs', type=int, default=4, help='')
parser.add_argument('--num_workers', type=int, default=0, help='')

def main():
    
    args = parser.parse_args()

    print("Starting Wandb...")

    wandb.init(project="wandb-pytorch-test", config=args)

    class Net(nn.Module):

       def __init__(self):
          super(Net, self).__init__()

          self.conv1 = nn.Conv2d(3, 6, 5)
          self.pool = nn.MaxPool2d(2, 2)
          self.conv2 = nn.Conv2d(6, 16, 5)
          self.fc1 = nn.Linear(16 * 5 * 5, 120)
          self.fc2 = nn.Linear(120, 84)
          self.fc3 = nn.Linear(84, 10)

       def forward(self, x):
          x = self.pool(F.relu(self.conv1(x)))
          x = self.pool(F.relu(self.conv2(x)))
          x = x.view(-1, 16 * 5 * 5)
          x = F.relu(self.fc1(x))
          x = F.relu(self.fc2(x))
          x = self.fc3(x)
          return x

    net = Net()

    transform_train = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    dataset_train = CIFAR10(root='./data', train=True, download=False, transform=transform_train)

    train_loader = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.num_workers)

    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=args.lr)

    wandb.watch(net)

    for epoch in range(args.max_epochs):

        train(epoch, net, criterion, optimizer, train_loader)


def train(epoch, net, criterion, optimizer, train_loader):

    for batch_idx, (inputs, targets) in enumerate(train_loader):

       outputs = net(inputs)
       loss = criterion(outputs, targets)

       optimizer.zero_grad()
       loss.backward()
       optimizer.step()


if __name__=='__main__':
   main()