Modules avx512: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 1,768: Line 1,768:
| align="center" | tools
| align="center" | tools
| align="center" | 0.3.1
| align="center" | 0.3.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: This is GLOST, the Greedy Launcher Of Small Tasks. Homepage: https://github.com/cea-hpc/glost Keyword:tools<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: This is GLOST, the Greedy Launcher Of Small Tasks. Homepage: https://github.com/cea-hpc/glost URL: https://github.com/cea-hpc/glost Keyword:tools<br /><br /><br /></div>
|-
|-
| align="center" | [https://www.gnu.org/software/glpk/ glpk]
| align="center" | [https://www.gnu.org/software/glpk/ glpk]
Line 2,968: Line 2,968:
| align="center" | math
| align="center" | math
| align="center" | 4.0.3, 5.1.0
| align="center" | 4.0.3, 5.1.0
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. Homepage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview Keyword:math<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. Homepage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview URL: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview Keyword:math<br /><br /><br /></div>
|-
|-
| align="center" | [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview metis-64idx]
| align="center" | [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview metis-64idx]
Line 3,013: Line 3,013:
| align="center" | bio
| align="center" | bio
| align="center" | 2.0.1
| align="center" | 2.0.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Minimac3 is a lower memory and more computationally efficient implementation of the genotype imputation algorithms in minimac and minimac2. Minimac3 is designed to handle very large reference panels in a more computationally efficient way with no loss of accuracy. Homepage: http://genome.sph.umich.edu/wiki/Minimac3 URL: http://genome.sph.umich.edu/wiki/Minimac3 Keyword:bio<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Minimac3 is a lower memory and more computationally efficient implementation of the genotype imputation algorithms in minimac and minimac2. Minimac3 is designed to handle very large reference panels in a more computationally efficient way with no loss of accuracy. Homepage: http://genome.sph.umich.edu/wiki/Minimac3 Keyword:bio<br /><br /><br /></div>
|-
|-
| align="center" | [https://genome.sph.umich.edu/wiki/Minimac4 minimac4]
| align="center" | [https://genome.sph.umich.edu/wiki/Minimac4 minimac4]
Line 4,158: Line 4,158:
| align="center" | geo
| align="center" | geo
| align="center" | 1.0
| align="center" | 1.0
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: proj4-fortran is a f77 and f90 wrappers for proj4, a cartograohic projections library. Homepage: https://github.com/mhagdorn/proj4-fortran URL: https://github.com/mhagdorn/proj4-fortran Keyword:geo<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: proj4-fortran is a f77 and f90 wrappers for proj4, a cartograohic projections library. Homepage: https://github.com/mhagdorn/proj4-fortran Keyword:geo<br /><br /><br /></div>
|-
|-
| align="center" | [https://www.vicbioinformatics.com/software.prokka.shtml prokka]
| align="center" | [https://www.vicbioinformatics.com/software.prokka.shtml prokka]
Line 4,734: Line 4,734:
| align="center" | 4.2.0, 4.2.1
| align="center" | 4.2.0, 4.2.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: SHAPEIT4 is a fast and accurate method for estimation of haplotypes (aka phasing) for SNP array and high coverage sequencing data. Homepage: https://odelaneau.github.io/shapeit4/ URL: https://odelaneau.github.io/shapeit4/<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: SHAPEIT4 is a fast and accurate method for estimation of haplotypes (aka phasing) for SNP array and high coverage sequencing data. Homepage: https://odelaneau.github.io/shapeit4/ URL: https://odelaneau.github.io/shapeit4/<br /><br /><br /></div>
|-
| align="center" | [https://odelaneau.github.io/shapeit5/ shapeit5]
| align="center" | -
| align="center" | 5.1.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: SHAPEIT5 estimates haplotypes in large datasets, with a special focus on rare variants. Homepage: https://odelaneau.github.io/shapeit5/ URL: https://odelaneau.github.io/shapeit5/<br /><br /><br /></div>
|-
|-
| align="center" | [https://github.com/chanzuckerberg/shasta shasta]
| align="center" | [https://github.com/chanzuckerberg/shasta shasta]
Line 5,123: Line 5,128:
| align="center" | -
| align="center" | -
| align="center" | 6.0.1.5, 8.6.1.6
| align="center" | 6.0.1.5, 8.6.1.6
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: NVIDIA TensorRT is a platform for high-performance deep learning inference Homepage: https://developer.nvidia.com/tensorrt URL: https://developer.nvidia.com/tensorrt Compatible modules: python/3.8, python/3.9, python/3.10, python/3.11<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: NVIDIA TensorRT is a platform for high-performance deep learning inference Homepage: https://developer.nvidia.com/tensorrt URL: https://developer.nvidia.com/tensorrt Compatible modules: python/3.10, python/3.11<br /><br /><br /></div>
|-
|-
| align="center" | [https://github.com/tesseract-ocr/tesseract tesseract]
| align="center" | [https://github.com/tesseract-ocr/tesseract tesseract]
cc_staff
153

edits