Modules avx512: Difference between revisions

no edit summary
No edit summary
No edit summary
Line 308: Line 308:
| align="center" | bio
| align="center" | bio
| align="center" | 3.0.4
| align="center" | 3.0.4
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: BayesAss: Bayesian Inference of Recent Migration Using Multilocus Genotypes Homepage: http://www.rannala.org/?page_id=245 Keyword:bio<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: BayesAss: Bayesian Inference of Recent Migration Using Multilocus Genotypes Homepage: http://www.rannala.org/?page_id=245 URL: http://www.rannala.org/?page_id=245 Keyword:bio<br /><br /><br /></div>
|-
|-
| align="center" | [http://www.rannala.org/inference-of-recent-migration bayesass3-snps]
| align="center" | [http://www.rannala.org/inference-of-recent-migration bayesass3-snps]
Line 1,908: Line 1,908:
| align="center" | chem
| align="center" | chem
| align="center" | 2021.7-0.5.1
| align="center" | 2021.7-0.5.1
| Documentation: [[GROMACS]]<div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Modified GROMACS for small-angle scattering calculations (SAXS/WAXS/SANS). This is a CPU only build, containing both MPI and threadMPI builds. - CC-Wiki: GROMACS Homepage: https://cbjh.gitlab.io/gromacs-swaxs-docs/ URL: https://cbjh.gitlab.io/gromacs-swaxs-docs/ Keyword:chem<br /><br /><br /></div>
| Documentation: [[GROMACS]]<div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Modified GROMACS for small-angle scattering calculations (SAXS/WAXS/SANS). This is a GPU enabled build, containing both MPI and threadMPI builds. - CC-Wiki: GROMACS Homepage: https://cbjh.gitlab.io/gromacs-swaxs-docs/ URL: https://cbjh.gitlab.io/gromacs-swaxs-docs/ Keyword:chem<br /><br /><br /></div>
|-
|-
| align="center" | [https://www.gnu.org/software/gsl/ gsl]
| align="center" | [https://www.gnu.org/software/gsl/ gsl]
Line 2,978: Line 2,978:
| align="center" | math
| align="center" | math
| align="center" | 4.0.3, 5.1.0
| align="center" | 4.0.3, 5.1.0
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. Homepage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview Keyword:math<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. Homepage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview URL: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview Keyword:math<br /><br /><br /></div>
|-
|-
| align="center" | [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview metis-64idx]
| align="center" | [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview metis-64idx]
Line 3,023: Line 3,023:
| align="center" | bio
| align="center" | bio
| align="center" | 2.0.1
| align="center" | 2.0.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Minimac3 is a lower memory and more computationally efficient implementation of the genotype imputation algorithms in minimac and minimac2. Minimac3 is designed to handle very large reference panels in a more computationally efficient way with no loss of accuracy. Homepage: http://genome.sph.umich.edu/wiki/Minimac3 Keyword:bio<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Minimac3 is a lower memory and more computationally efficient implementation of the genotype imputation algorithms in minimac and minimac2. Minimac3 is designed to handle very large reference panels in a more computationally efficient way with no loss of accuracy. Homepage: http://genome.sph.umich.edu/wiki/Minimac3 URL: http://genome.sph.umich.edu/wiki/Minimac3 Keyword:bio<br /><br /><br /></div>
|-
|-
| align="center" | [https://genome.sph.umich.edu/wiki/Minimac4 minimac4]
| align="center" | [https://genome.sph.umich.edu/wiki/Minimac4 minimac4]
Line 3,623: Line 3,623:
| align="center" | chem
| align="center" | chem
| align="center" | 7.1.1, 7.4.1, 7.5.0, 7.6.0, 7.7.0, 8.0.0
| align="center" | 7.1.1, 7.4.1, 7.5.0, 7.6.0, 7.7.0, 8.0.0
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: OpenMM is a toolkit for molecular simulation. Homepage: http://openmm.org URL: http://openmm.org Compatible modules: python/3.10, python/3.11 Extensions: pdbfixer-1.8.1 Keyword:chem<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: OpenMM is a toolkit for molecular simulation. Homepage: http://openmm.org URL: http://openmm.org Compatible modules: python/3.8, python/3.9, python/3.10 Extensions: pdbfixer-1.8.1 Keyword:chem<br /><br /><br /></div>
|-
|-
| align="center" | [http://openmm.org openmm-alphafold]
| align="center" | [http://openmm.org openmm-alphafold]
Line 5,158: Line 5,158:
| align="center" | -
| align="center" | -
| align="center" | 6.0.1.5, 8.6.1.6
| align="center" | 6.0.1.5, 8.6.1.6
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: NVIDIA TensorRT is a platform for high-performance deep learning inference Homepage: https://developer.nvidia.com/tensorrt URL: https://developer.nvidia.com/tensorrt Compatible modules: python/3.8, python/3.9, python/3.10, python/3.11<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: NVIDIA TensorRT is a platform for high-performance deep learning inference Homepage: https://developer.nvidia.com/tensorrt URL: https://developer.nvidia.com/tensorrt Compatible modules: python/3.10, python/3.11<br /><br /><br /></div>
|-
|-
| align="center" | [https://github.com/tesseract-ocr/tesseract tesseract]
| align="center" | [https://github.com/tesseract-ocr/tesseract tesseract]