PyTorch
PyTorch is a Python package that provides two high-level features:
- Tensor computation (like NumPy) with strong GPU acceleration
- Deep neural networks built on a tape-based autograd system
If you are porting a PyTorch program to a Compute Canada cluster, you should follow our tutorial on the subject.
Disambiguation
PyTorch has a distant connection with Torch, but for all practical purposes you can treat them as separate projects.
PyTorch developers also offer LibTorch, which allows one to implement extensions to PyTorch using C++, and to implement pure C++ machine learning applications. Models written in Python using PyTorch can be converted and used in pure C++ through TorchScript.
Installation
Latest available wheels
To see the latest version of PyTorch that we have built:
[name@server ~]$ avail_wheels "torch*"
For more information on listing wheels, see listing available wheels.
Installing Compute Canada wheel
The preferred option is to install it using the Python wheel as follows:
- 1. Load a Python module, either python/2.7, python/3.5, python/3.6 or python/3.7
- 2. Create and start a virtual environment.
- 3. Install PyTorch in the virtual environment with
pip install
.
GPU and CPU
-
(venv) [name@server ~] pip install --no-index torch
Extra
In addition to torch, you can install torchvision, torchtext and torchaudio:
(venv) [name@server ~] pip install --no-index torch torchvision torchtext torchaudio
Job submission
Here is an example of a job submission script using the python wheel, with a virtual environment inside a job:
#!/bin/bash
#SBATCH --gres=gpu:1 # Request GPU "generic resources"
#SBATCH --cpus-per-task=6 # Cores proportional to GPUs: 6 on Cedar, 16 on Graham.
#SBATCH --mem=32000M # Memory proportional to GPUs: 32000 Cedar, 64000 Graham.
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out
module load python/3.6
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torch --no-index
python pytorch-test.py
The Python script pytorch-test.py
has the form
import torch
x = torch.Tensor(5, 3)
print(x)
y = torch.rand(5, 3)
print(y)
# let us run the following only if CUDA is available
if torch.cuda.is_available():
x = x.cuda()
y = y.cuda()
print(x + y)
You can then submit a PyTorch job with:
[name@server ~]$ sbatch pytorch-test.sh
PyTorch with Multiple GPUs
There are several ways to use PyTorch with multiple GPUs. This section features tutorials on two of them: using the DistributedDataParallel class and using the PyTorch Lightning package.
Using DistributedDataParallel
The DistributedDataParallel class is the way recommended by PyTorch maintainers to use multiple GPUs, whether they are all on a single node, or distributed across multiple nodes. The following is a tutorial on multiple GPUs distributed across 2 nodes:
#!/bin/bash
#SBATCH --nodes 2 # Request 2 nodes so all resources are in two nodes.
#SBATCH --gres=gpu:2 # Request 2 GPU "generic resources”. You will get 2 per node.
#SBATCH --tasks-per-node=2 # Request 1 process per GPU. You will get 1 CPU per process by default. Request more CPUs with the "cpus-per-task" parameter to enable multiple data-loader workers to load data in parallel.
#SBATCH --mem=8G
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out
module load python/3.6
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torchvision --no-index
export NCCL_BLOCKING_WAIT=1 #Set this environment variable if you wish to use the NCCL backend for inter-GPU communication.
export MASTER_ADDR=$(hostname) #Store the master node’s IP address in the MASTER_ADDR environment variable.
echo "r$SLURM_NODEID master: $MASTER_ADDR"
echo "r$SLURM_NODEID Launching python script"
# The SLURM_NTASKS variable tells the script how many processes are available for this execution. “srun” executes the script <tasks-per-node * nodes> times
srun python pytorch-ddp-test.py --init_method tcp://$MASTER_ADDR:3456 --world_size $SLURM_NTASKS --batch_size 256
The Python script pytorch-ddp-test.py
has the form
import os
import time
import datetime
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import torch.distributed as dist
import torch.utils.data.distributed
import argparse
parser = argparse.ArgumentParser(description='cifar10 classification models, distributed data parallel test')
parser.add_argument('--lr', default=0.1, help='')
parser.add_argument('--batch_size', type=int, default=768, help='')
parser.add_argument('--max_epochs', type=int, default=4, help='')
parser.add_argument('--num_workers', type=int, default=0, help='')
parser.add_argument('--init_method', default='tcp://127.0.0.1:3456', type=str, help='')
parser.add_argument('--dist-backend', default='gloo', type=str, help='')
parser.add_argument('--world_size', default=1, type=int, help='')
parser.add_argument('--distributed', action='store_true', help='')
def main():
print("Starting...")
args = parser.parse_args()
ngpus_per_node = torch.cuda.device_count()
""" This next line is the key to getting DistributedDataParallel working on SLURM:
SLURM_NODEID is 0 or 1 in this example, SLURM_LOCALID is the id of the
current process inside a node and is also 0 or 1 in this example."""
local_rank = int(os.environ.get("SLURM_LOCALID"))
rank = int(os.environ.get("SLURM_NODEID"))*ngpus_per_node + local_rank
""" this block initializes a process group and initiate communications
between all processes running on all nodes """
print('From Rank: {}, ==> Initializing Process Group...'.format(rank))
#init the process group
dist.init_process_group(backend=args.dist_backend, init_method=args.init_method, world_size=args.world_size, rank=rank)
print("process group ready!")
print('From Rank: {}, ==> Making model..'.format(rank))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
net.cuda()
net = torch.nn.parallel.DistributedDataParallel(net)
print('From Rank: {}, ==> Preparing data..'.format(rank))
transform_train = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = CIFAR10(root='./data', train=True, download=False, transform=transform_train)
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=(train_sampler is None), num_workers=args.num_workers, sampler=train_sampler)
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-4)
for epoch in range(args.max_epochs):
train_sampler.set_epoch(epoch)
train(epoch, net, criterion, optimizer, train_loader, rank)
def train(epoch, net, criterion, optimizer, train_loader, train_rank):
train_loss = 0
correct = 0
total = 0
epoch_start = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
start = time.time()
inputs = inputs.cuda()
targets = targets.cuda()
outputs = net(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100 * correct / total
batch_time = time.time() - start
elapse_time = time.time() - epoch_start
elapse_time = datetime.timedelta(seconds=elapse_time)
print("From Rank: {}, Training time {}".format(train_rank, elapse_time))
if __name__=='__main__':
main()
Using PyTorch Lightning
PyTorch Lightning is a Python package that provides interfaces to PyTorch to make many common, but otherwise code-heavy tasks, more straightforward. This includes training on multiple GPUs. The following is the same tutorial from the section above, but using PyTorch Lightning instead of explicitly leveraging the DistributedDataParallel class:
#!/bin/bash
#SBATCH --nodes 2 # Request 2 node so all resources are in two nodes.
#SBATCH --gres=gpu:2 # Request 2 GPU "generic resources”. You will get 2 per node.
#SBATCH --tasks-per-node=2 # Request 1 process per GPU. You will get 1 CPU per process by default. Request more CPUs with the "cpus-per-task" parameter to enable multiple data-loader workers to load data in parallel.
#SBATCH --mem=8G
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out
module load python/3.6
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torchvision pytorch-lightning --no-index
export NCCL_BLOCKING_WAIT=1 #Pytorch Lightning uses the NCCL backend for inter-GPU communication by default. Set this variable to avoid timeout errors.
srun python pytorch-ddp-test-pl.py --batch_size 256
import datetime
import torch
from torch import nn
import torch.nn.functional as F
import pytorch_lightning as pl
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import argparse
parser = argparse.ArgumentParser(description='cifar10 classification models, pytorch-lightning parallel test')
parser.add_argument('--lr', default=0.1, help='')
parser.add_argument('--max_epochs', type=int, default=4, help='')
parser.add_argument('--batch_size', type=int, default=768, help='')
parser.add_argument('--num_workers', type=int, default=0, help='')
def main():
print("Starting...")
args = parser.parse_args()
class Net(pl.LightningModule):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=args.lr)
net = Net()
""" Here we initialize a Trainer() explicitly with 2 nodes and 2 GPUs per node.
To make this script more generic, you can use torch.cuda.device_count() to set the number of GPUs
and you can use int(os.environ.get("SLURM_JOB_NUM_NODES")) to set the number of nodes."""
trainer = pl.Trainer(gpus=2, num_nodes=2,accelerator='ddp', max_epochs = args.max_epochs)
transform_train = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = CIFAR10(root='./data', train=True, download=False, transform=transform_train)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.num_workers)
trainer.fit(net,train_loader)
if __name__=='__main__':
main()
Troubleshooting
Memory leak
On AVX512 hardware (Béluga, Skylake or V100 nodes), older versions of Pytorch (less than v1.0.1) using older libraries (cuDNN < v7.5 or MAGMA < v2.5) may considerably leak memory resulting in an out-of-memory exception and death of your tasks. Please upgrade to the latest torch version.
LibTorch
LibTorch allows one to implement both C++ extensions to PyTorch and pure C++ machine learning applications. It contains "all headers, libraries and CMake configuration files required to depend on PyTorch" (as mentioned in the docs).
How to use LibTorch
Get the library
wget https://download.pytorch.org/libtorch/cu100/libtorch-shared-with-deps-latest.zip
unzip libtorch-shared-with-deps-latest.zip
cd libtorch
export LIBTORCH_ROOT=$(pwd) # this variable is used in the example below
Patch the library (this workaround is needed for compiling on Compute Canada clusters):
sed -i -e 's/\/usr\/local\/cuda\/lib64\/libculibos.a;dl;\/usr\/local\/cuda\/lib64\/libculibos.a;//g' share/cmake/Caffe2/Caffe2Targets.cmake
Compile a minimal example
Create the following two files:
#include <torch/torch.h>
#include <iostream>
int main() {
torch::Device device(torch::kCPU);
if (torch::cuda::is_available()) {
std::cout << "CUDA is available! Using GPU." << std::endl;
device = torch::Device(torch::kCUDA);
}
torch::Tensor tensor = torch::rand({2, 3}).to(device);
std::cout << tensor << std::endl;
}
cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(example-app)
find_package(Torch REQUIRED)
add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 11)
Load the necessary modules:
module load cmake intel/2018.3 cuda/10 cudnn
Compile the program:
mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH="$LIBTORCH_ROOT;$EBROOTCUDA;$EBROOTCUDNN" ..
make
Run the program:
./example-app
To test an application with CUDA, request an interactive job with a GPU.