Tutoriel OpenACC : Profileurs
- comprendre ce qu'est un profileur
- savoir utiliser PGPROF
- comprendre la performance du code
- savoir concentrer vos efforts et réécrire les routines qui exigent beaucoup de temps
Profiler du code
Pourquoi auriez-vous besoin de profiler du code? Parce que c'est la seule façon de comprendre
- comment le temps est employé aux points critiques (hotspots),
- comprendre la performance du code,
- savoir comment mieux employer votre temps.
Pourquoi est-ce important de connaitre les points critiques dans le code? D'après la loi d'Amdahl, paralléliser les routines qui exigent le plus de temps d'exécution (les points critiques) produit le plus d'impact.
Préparer le code pour l'exercice
Pour notre exemple, nous utilisons du code provenant de ces dépôts. Téléchargez les fichiers et utilisez les répertoires cpp ou f90. Le but de l'exercice est de compiler et lier le code et d'obtenir un exécutable que nous profilerons.
En date de mai 2016, relativement peu de compilateurs offraient les fonctionnalités d'OpenACC. Les plus avancés en ce sens sont les compilateurs du Portland Group de NVidia et ceux de Cray. Pour ce est qui de GNU, l'implémentation d'OpenACC dans la version 5 était expérimentale et devrait être complète dans la version 6.
Dans ce tutoriel, nous utilisons la version 16.3 des compilateurs du Portland Group qui sont gratuits pour des fins de recherche universitaire.
[name@server ~]$ make
nvc++ -c -o main.o main.cpp
nvc++ main.o -o cg.x
Une fois l'exécutable créé, nous allons profiler le code.
Dans ce tutoriel, nous utilisons plusieurs des profileurs suivants :
- PGPROF : outil simple mais puissant pour l'analyse de programmes parallèles écrits avec OpenMP, OpenACC ou CUDA; rappelons que PGPROF est gratuit pour des fins de recherche universitaire.
- NVVP (NVIDIA Visual Profiler) : outil d'analyse multiplateforme pour des programmes écrits avec OpenACC et CUDA C/C++.
- NVPROF : version ligne de commande du NVIDIA Visual Profiler.
PGPROF
Ouvrez d'abord une nouvelle session PGPROF.
Localisez ensuite le fichier exécutable du code que vous voulez profiler.
Enfin, sélectionnez les options; par exemple, pour profiler l'activité du processeur, cochez Profile execution of the CPU.
NVVP
Le NVIDIA Visual Profiler peut être employé avec les applications OpenACC. C'est un outil d'analyse multiplateforme pour les instructions OpenACC et CUDA C/C++.
NVPROF ligne de commande
La version ligne de commande de NVPROF est semblable à GPU prof.
[name@server ~]$ nvprof --cpu-profiling on ./cg.x
<Program output >
======== CPU profiling result (bottom up):
84.25% matvec(matrix const &, vector const &, vector const &)
84.25% main
9.50% waxpby(double, vector const &, double, vector const &, vector const &)
3.37% dot(vector const &, vector const &)
2.76% allocate_3d_poisson_matrix(matrix&, int)
2.76% main
0.11% __c_mset8
0.03% munmap
0.03% free_matrix(matrix&)
0.03% main
======== Data collected at 100Hz frequency
Renseignements sur le compilateur
Avant de travailler sur la routine, nous devons comprendre ce que fait le compilateur; posons-nous les questions suivantes :
- Quelles sont les optimisations qui ont été appliquées?
- Qu'est-ce qui a empêché d'optimiser davantage?
- La performance serait-elle affectée par les petites modifications?
Le compilateur PGI offre l'indicateur -Minfo avec les options suivantes :
- accel – liste des opérations du compilateur relativement à l'accélérateur
- all – résultats en sortie du compilateur
- intensity – renseignements sur l'intensité de la boucle
- ccff – ajout de renseignements aux fichiers objet pour utilisation future
Obtenir les renseignements sur le compilateur
- Éditez le Makefile.
CXX=pgc++ CXXFLAGS=-fast -Minfo=all,intensity,ccff LDFLAGS=${CXXFLAGS}
- Effectuez un nouveau build.
[name@server ~]$ make
nvc++ -fast -Minfo=all,intensity,ccff -c -o main.o main.cpp
initialize_vector(vector &, double):
20, include "vector.h"
36, Intensity = 0.0
Memory set idiom, loop replaced by call to __c_mset8
dot(const vector &, const vector &):
21, include "vector_functions.h"
27, Intensity = 1.00
Generated vector simd code for the loop containing reductions
FMA (fused multiply-add) instruction(s) generated
waxpby(double, const vector &, double, const vector &, const vector &):
21, include "vector_functions.h"
39, Intensity = 1.00
Loop not vectorized: data dependency
Generated vector simd code for the loop
Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated
allocate_3d_poisson_matrix(matrix &, int):
22, include "matrix.h"
43, Intensity = 0.0
Loop not fused: different loop trip count
44, Intensity = 0.0
Loop not vectorized/parallelized: loop count too small
45, Intensity = 0.0
57, Intensity = 0.0
59, Intensity = 0.0
Loop not vectorized: data dependency
matvec(const matrix &, const vector &, const vector &):
23, include "matrix_functions.h"
29, Intensity = (num_rows*((row_end-row_start)* 2))/(num_rows+(num_rows+(num_rows+((row_end-row_start)+(row_end-row_start)))))
FMA (fused multiply-add) instruction(s) generated
33, Intensity = 1.00
Loop not vectorized: non-stride-1 array reference
Loop not vectorized: mixed data types
Loop unrolled 2 times
FMA (fused multiply-add) instruction(s) generated
main:
38, allocate_3d_poisson_matrix(matrix &, int) inlined, size=41 (inline) file main.cpp (29)
43, Intensity = 0.0
Loop not fused: different loop trip count
44, Intensity = 0.0
Loop not vectorized/parallelized: loop count too small
45, Intensity = 0.0
57, Intensity = 0.0
Loop not fused: function call before adjacent loop
59, Intensity = 0.0
Loop not vectorized: data dependency
42, allocate_vector(vector &, unsigned int) inlined, size=3 (inline) file main.cpp (24)
43, allocate_vector(vector &, unsigned int) inlined, size=3 (inline) file main.cpp (24)
44, allocate_vector(vector &, unsigned int) inlined, size=3 (inline) file main.cpp (24)
45, allocate_vector(vector &, unsigned int) inlined, size=3 (inline) file main.cpp (24)
46, allocate_vector(vector &, unsigned int) inlined, size=3 (inline) file main.cpp (24)
48, initialize_vector(vector &, double) inlined, size=5 (inline) file main.cpp (34)
36, Intensity = 0.0
Loop not vectorized/parallelized: not countable
49, initialize_vector(vector &, double) inlined, size=5 (inline) file main.cpp (34)
36, Intensity = 0.0
Loop not vectorized/parallelized: not countable
52, waxpby(double, const vector &, double, const vector &, const vector &) inlined, size=10 (inline) file main.cpp (33)
39, Intensity = 0.0
Memory copy idiom, loop replaced by call to __c_mcopy8
53, matvec(const matrix &, const vector &, const vector &) inlined, size=19 (inline) file main.cpp (20)
29, Intensity = [symbolic], and not printable, try the -Mpfi -Mpfo options
Loop not fused: different loop trip count
33, Intensity = 1.00
Loop not vectorized: non-stride-1 array reference
Loop not vectorized: mixed data types
Loop unrolled 2 times
54, waxpby(double, const vector &, double, const vector &, const vector &) inlined, size=10 (inline) file main.cpp (33)
27, FMA (fused multiply-add) instruction(s) generated
29, FMA (fused multiply-add) instruction(s) generated
33, FMA (fused multiply-add) instruction(s) generated
39, Intensity = 0.67
Loop not fused: different loop trip count
Loop not vectorized: data dependency
Generated vector simd code for the loop
Loop unrolled 4 times
FMA (fused multiply-add) instruction(s) generated
56, dot(const vector &, const vector &) inlined, size=9 (inline) file main.cpp (21)
27, Intensity = 1.00
Loop not fused: function call before adjacent loop
Generated vector simd code for the loop containing reductions
61, Intensity = 0.0
62, waxpby(double, const vector &, double, const vector &, const vector &) inlined, size=10 (inline) file main.cpp (33)
39, Intensity = 0.0
Memory copy idiom, loop replaced by call to __c_mcopy8
65, dot(const vector &, const vector &) inlined, size=9 (inline) file main.cpp (21)
27, Intensity = 1.00
Loop not fused: different loop trip count
Generated vector simd code for the loop containing reductions
67, waxpby(double, const vector &, double, const vector &, const vector &) inlined, size=10 (inline) file main.cpp (33)
39, Intensity = 0.67
Loop not fused: different loop trip count
Loop not vectorized: data dependency
Generated vector simd code for the loop
Loop unrolled 4 times
72, matvec(const matrix &, const vector &, const vector &) inlined, size=19 (inline) file main.cpp (20)
29, Intensity = [symbolic], and not printable, try the -Mpfi -Mpfo options
Loop not fused: different loop trip count
33, Intensity = 1.00
Loop not vectorized: non-stride-1 array reference
Loop not vectorized: mixed data types
Loop unrolled 2 times
73, dot(const vector &, const vector &) inlined, size=9 (inline) file main.cpp (21)
27, Intensity = 1.00
Loop not fused: different loop trip count
Generated vector simd code for the loop containing reductions
77, waxpby(double, const vector &, double, const vector &, const vector &) inlined, size=10 (inline) file main.cpp (33)
39, Intensity = 0.67
Loop not fused: different loop trip count
Loop not vectorized: data dependency
Generated vector simd code for the loop
Loop unrolled 4 times
78, waxpby(double, const vector &, double, const vector &, const vector &) inlined, size=10 (inline) file main.cpp (33)
39, Intensity = 0.67
Loop not fused: function call before adjacent loop
Loop not vectorized: data dependency
Generated vector simd code for the loop
Loop unrolled 4 times
88, free_vector(vector &) inlined, size=2 (inline) file main.cpp (29)
89, free_vector(vector &) inlined, size=2 (inline) file main.cpp (29)
90, free_vector(vector &) inlined, size=2 (inline) file main.cpp (29)
91, free_vector(vector &) inlined, size=2 (inline) file main.cpp (29)
92, free_matrix(matrix &) inlined, size=5 (inline) file main.cpp (73)
nvc++ main.o -o cg.x -fast -Minfo=all,intensity,ccff
Intensité computationnelle
L'intensité computationnelle d'une boucle représente la quantité de travail accompli par la boucle en fonction des opérations effectuées en mémoire.
intensité computationnelle = opérations de calcul / opérations en mémoire
Une valeur de 1 ou plus indique que la boucle serait bien exécutée sur un processeur graphique (GPU).
Comprendre le code
Regardons attentivement le code suivant :
for(int i=0;i<num_rows;i++) {
double sum=0;
int row_start=row_offsets[i];
int row_end=row_offsets[i+1];
for(int j=row_start; j<row_end;j++) {
unsigned int Acol=cols[j];
double Acoef=Acoefs[j];
double xcoef=xcoefs[Acol];
sum+=Acoef*xcoef;
}
ycoefs[i]=sum;
}
On trouvera les dépendances de données en se posant les questions suivantes :
- Une itération en affecte-t-elle d'autres?
- Les itérations lisent-elles ou écrivent-elles à des endroits différents du même tableau?
- Est-ce que sum est une dépendance? Non, c'est une réduction.