PyKeOps
The KeOps library lets you compute reductions of large arrays whose entries are given by a mathematical formula or a neural network. It combines efficient C++ routines with an automatic differentiation engine and can be used with Python (NumPy, PyTorch), MATLAB and R.
Versions disponibles
Les versions disponibles sur nos grappes sopnt des wheels Python. Voyez la liste en lançant avail_wheels
.
[name@server ~]$ avail_wheels pykeops
name version python arch
------- --------- -------- -------
pykeops 2.2.3 py3 generic
Installing PyKeOps in a Python virtual environment
1. Load runtime dependencies.
[name@server ~]$ module load StdEnv/2023 python/3.11
2. Créez et activez un environnement virtuel Python.
[name@server ~]$ virtualenv --no-download ~/pykeops_env
[name@server ~]$ source ~/pykeops_env/bin/activate
3. Installez une version de PyKeOps avec ses dépendances Python.
(pykeops_env) [name@server ~] pip install --no-index --upgrade pip
(pykeops_env) [name@server ~] pip install --no-index pykeops==X.Y.Z
where X.Y.Z
is the exact desired version, for instance 2.2.3
.
You can omit to specify the version in order to install the latest one available from the wheelhouse.
4. Validez.
(pykeops_env) [name@server ~] python -c 'import pykeops; pykeops.test_numpy_bindings()'
5. Gelez l'environnement et l'ensemble des exigences.
(pykeops_env) [name@server ~] pip freeze --local > ~/pykeops-2.2.3-requirements.txt
6. Supprimez l'environnemnent virtuel local.
(pykeops_env) [name@server ~] deactivate && rm -r ~/pykeops_env
Exécution
Vous pouvez exécuter PyKeOps sur un CPU ou un GPU.
1. Préparez votre script d'exécution.
#!/bin/bash
#SBATCH --account=def-someprof # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00 # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=4 # adjust this to match the number of cores to use
#SBATCH --mem-per-cpu=4G # adjust this according to the memory you need per cpu
# Load modules dependencies.
module load StdEnv/2023 python/3.11
# create the virtual environment on the compute node:
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index --upgrade pip
pip install --no-index -r pykeops-2.2.3-requirements.txt
# test that everything is OK
python -c 'import pykeops; pykeops.test_numpy_bindings()'
#!/bin/bash
#SBATCH --account=def-someprof # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00 # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=4 # adjust this to match the number of cores to use
#SBATCH --mem-per-cpu=4G # adjust this according to the memory you need per cpu
#SBATCH --gpus=1
# Load modules dependencies. The custom-ctypes is critical here.
module load StdEnv/2023 python/3.11 cuda/12 custom-ctypes
# create the virtual environment on the compute node:
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index --upgrade pip
pip install --no-index -r pykeops-2.2.3-requirements.txt
# test that nvrtc binding are also found
python -c 'import pykeops; pykeops.test_numpy_bindings()'
2. Before submitting your job, it is important to test that your submission script will start without errors. You can do a quick test in an interactive job.