JupyterNotebook
Introduction
Project Jupyter is an open source project, born out of the IPython Project, as it evolved to support interactive data science and scientific computing across all programming languages.
Jupyter notebook comes in one Python model on Graham. You can get it working on the login node (not recommended), and the compute nodes (highly recommended). Note that login nodes impose various user- and process-based limits, so notebooks running there may be killed if they consume significant cpu-time or memory. To use a compute node you will have to submit a job requesting the number of CPUs (and, optionally, GPUs), the amount of memory, and the run time. Here, we give the instructions to submit a Jupyter job.
Installing Jupyter Notebook
These instructions install Jupyter into your home directory. To install Jupyter we will use the pip
command and install it into a Python virtual environment. The below instructions install for Python 3.5.2 but you can also install for Python 3.5.Y or 2.7.X by loading a different Python module.
Load the Python module:
[name@server ~]$ module load python/3.5.2
Create a new Python virtual environment:
[name@server ~]$ virtualenv $HOME/jupyter_py3
Activate your newly created Python virtual environment:
[name@server ~]$ source $HOME/jupyter_py3/bin/activate
Install Jupyter into your virtual environment:
(jupyter_py3)[name@server $] pip install jupyter
In your virtual environment, create a wrapper script that launches Jupyter notebook
(jupyter_py3)[name@server $] echo -e '#!/bin/bash\nunset XDG_RUNTIME_DIR\njupyter notebook --ip $(hostname -f) --no-browser' > $VIRTUAL_ENV/bin/notebook.sh
Finally, make the script executable
(jupyter_py3)[name@server $] chmod u+x $VIRTUAL_ENV/bin/notebook.sh
Installing Extensions
Extensions allow you to add functionalities and modify the appearance of the Notebook application.
Jupyter Lmod
Jupyter Lmod is an extension that allows user to interact with environment modules before launching kernels. The extension use Lmod's Python interface to accomplish module related task like loading, unloading, saving collection, etc.
(jupyter_py3)[name@server $] pip install jupyterlmod
(jupyter_py3)[name@server $] jupyter nbextension install --py jupyterlmod --sys-prefix
(jupyter_py3)[name@server $] jupyter nbextension enable --py jupyterlmod --sys-prefix
(jupyter_py3)[name@server $] jupyter serverextension enable --py jupyterlmod --sys-prefix
RStudio Launcher
Jupyter can be used to start an RStudio session that use Jupyter token authentication system. This extension add an "RStudio Session" button to the New notebook menu.
(jupyter_py3)[name@server $] pip install nbserverproxy
(jupyter_py3)[name@server $] pip install git+https://github.com/cmd-ntrf/nbrsessionproxy
(jupyter_py3)[name@server $] jupyter serverextension enable --py nbserverproxy --sys-prefix
(jupyter_py3)[name@server $] jupyter nbextension install --py nbrsessionproxy --sys-prefix
(jupyter_py3)[name@server $] jupyter nbextension enable --py nbrsessionproxy --sys-prefix
(jupyter_py3)[name@server $] jupyter serverextension enable --py nbrsessionproxy --sys-prefix
Connecting to a manually spawned Jupyter Notebook
Create a Tunnel
To access the notebook running on a compute node from your web browser, you will need to create a tunnel between the cluster and your computer since the compute nodes are not directly accessible from the Internet. To create that tunnel, we recommend the usage of the Python package sshuttle.
On your computer, open a new terminal window, and run the following sshuttle command to create the tunnel
[name@my_computer $] sshuttle --dns -Nr userid@machine_name
Activate the Environment
On the cluster, load the Python module associated with your environment:
[name@server ~]$ module load python/3.5.2
Then, activate the virtual environment in which you have installed Jupyter:
[name@server ~]$ source $HOME/jupyter_py3/bin/activate
RStudio Server (optional)
If you have installed the RStudio launcher extension and wish to use it, you will have to load the RStudio Server module.
[name@server ~]$ module load rstudio-server
Start the Notebook
To start the Notebook, submit an interactive job. Adjust the parameters based on your needs. See Running jobs for more information.
[name@server ~]$ salloc --time=1:0:0 --ntasks=1 --cpus-per-task=2 --mem-per-cpu=1024M --account=def-yourpi srun notebook.sh
salloc: Granted job allocation 1422754
[I 14:07:08.661 NotebookApp] Serving notebooks from local directory: /home/fafor10
[I 14:07:08.662 NotebookApp] 0 active kernels
[I 14:07:08.662 NotebookApp] The Jupyter Notebook is running at:
[I 14:07:08.663 NotebookApp] http://cdr544.int.cedar.computecanada.ca:8888/?token=7ed7059fad64446f837567e32af8d20efa72e72476eb72ca
[I 14:07:08.663 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 14:07:08.669 NotebookApp]
Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
http://cdr544.int.cedar.computecanada.ca:8888/?token=7ed7059fad64446f837567e32af8d20efa72e72476eb72ca
Copy/paste the provided URL into your browser and enjoy your notebook.
Shutdown the Notebook
To shutdown the Notebook server before the walltime limit, in the terminal that launched the interactive job, press Ctrl-C two times.