Using GPUs with Slurm

From Alliance Doc
Revision as of 14:39, 15 July 2020 by Guanw (talk | contribs)
Jump to navigation Jump to search
Other languages:

For general advice on job scheduling, see Running jobs.

Available hardware[edit]

These are the node types containing GPUs currently available on Béluga, Cedar, Graham and Hélios:

# of Nodes Node type CPU cores CPU memory # of GPUs NVIDIA GPU type PCIe bus topology
172 Béluga P100 GPU 40 191000M 4 V100-SXM2-16GB All GPUs associated with the same CPU socket
114 Cedar P100 GPU 24 128000M 4 P100-PCIE-12GB Two GPUs per CPU socket
32 Cedar P100L GPU 24 257000M 4 P100-PCIE-16GB All GPUs associated with the same CPU socket
192 Cedar V100L GPU 32 192000M 4 V100-PCIE-32GB Two GPUs per CPU socket; all GPUs connected via NVLink
160 Graham Base GPU 32 127518M 2 P100-PCIE-12GB One GPU per CPU socket
7 Graham Base GPU 28 183105M 8 V100-PCIE-16GB Four GPUs per CPU socket
36 Graham Base GPU 16 196608M 4 Tesla T4 16GB Two GPUs per CPU socket
15 Hélios K20 20 110000M 8 K20 5GB Four GPUs per CPU socket
6 Hélios K80 24 257000M 16 K80 12GB Eight GPUs per CPU socket
54 Niagara IBM AC922 32 Power9 256GB 4 V100-SMX2-32GB all GPUs connected via NVLinks

Specifying the type of GPU to use[edit]

Most clusters have multiple types of GPUs available. You can specify the type of GPU to use by adding a specifier to the --gres=gpu option. The following options are available:

On Cedar[edit]

You can request a 12G P100 using

 #SBATCH --gres=gpu:p100:1

or a 16G P100 using

 #SBATCH --gres=gpu:p100l:1

or a 32G V100 using

 #SBATCH --gres=gpu:v100l:1

Unless specified, all GPU jobs requesting <= 125G of memory will run on 12G P100s

On Graham[edit]

You can request a P100 using

 #SBATCH --gres=gpu:p100:1

or a V100 using

 #SBATCH --gres=gpu:v100:1

or a T4 using

 #SBATCH --gres=gpu:t4:1

Unless specified, all GPU jobs will run on a P100.

On Béluga[edit]

Béluga has only one type of GPU, so no options are provided.

On Hélios[edit]

You can request a K20 using

 #SBATCH --gres=gpu:k20:1

or a K80 using

 #SBATCH --gres=gpu:k80:1

Single-core job[edit]

If you need only a single CPU core and one GPU:

File : gpu_serial_job.sh

#!/bin/bash
#SBATCH --account=def-someuser
#SBATCH --gres=gpu:1              # Number of GPUs (per node)
#SBATCH --mem=4000M               # memory (per node)
#SBATCH --time=0-03:00            # time (DD-HH:MM)
./program                         # you can use 'nvidia-smi' for a test


Multi-threaded job[edit]

For GPU jobs asking for multiple CPUs in a single node:

File : gpu_threaded_job.sh

#!/bin/bash
#SBATCH --account=def-someuser
#SBATCH --gres=gpu:1              # Number of GPU(s) per node
#SBATCH --cpus-per-task=6         # CPU cores/threads
#SBATCH --mem=4000M               # memory per node
#SBATCH --time=0-03:00            # time (DD-HH:MM)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
./program


For each GPU requested on:

  • Béluga, we recommend no more than 10 CPU cores.
  • Cedar, we recommend no more than 6 CPU cores per P100 GPU (p100 and p100l) and no more than 8 CPU cores per V100 GPU (v100l).
  • Graham, we recommend no more than 16 CPU cores.

MPI job[edit]

File : gpu_mpi_job.sh

#!/bin/bash
#SBATCH --account=def-someuser
#SBATCH --gres=gpu:4              # Number of GPUs per node
#SBATCH --nodes=2                 # Number of nodes
#SBATCH --ntasks=48               # Number of MPI process
#SBATCH --cpus-per-task=1         # CPU cores per MPI process
#SBATCH --mem=120G                # memory per node
#SBATCH --time=0-03:00            # time (DD-HH:MM)
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./program


Whole nodes[edit]

If your application can efficiently use an entire node and its associated GPUs, you will probably experience shorter wait times if you ask Slurm for a whole node. Use one of the following job scripts as a template.

Requesting a GPU node on Graham[edit]

File : graham_gpu_node_job.sh

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --gres=gpu:2
#SBATCH --ntasks-per-node=32
#SBATCH --mem=127000M
#SBATCH --time=3:00
#SBATCH --account=def-someuser
nvidia-smi


Requesting a P100 GPU node on Cedar[edit]

File : cedar_gpu_node_job.sh

#!/bin/bash
#SBATCH --nodes=1
#SBATCH --gres=gpu:p100:4
#SBATCH --ntasks-per-node=24
#SBATCH --exclusive
#SBATCH --mem=125G
#SBATCH --time=3:00
#SBATCH --account=def-someuser
nvidia-smi


Requesting a P100-16G GPU node on Cedar[edit]

There is a special group of GPU nodes on Cedar which have four Tesla P100 16GB cards each. (Other P100 GPUs in the cluster have 12GB and the V100 GPUs have 32G.) The GPUs in a P100L node all use the same PCI switch, so the inter-GPU communication latency is lower, but bandwidth between CPU and GPU is lower than on the regular GPU nodes. The nodes also have 256GB RAM. You may only request these nodes as whole nodes, therefore you must specify --gres=gpu:p100l:4. P100L GPU jobs up to 28 days can be run on Cedar.


File : p100l_gpu_job.sh

#!/bin/bash
#SBATCH --nodes=1 
#SBATCH --gres=gpu:p100l:4   
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=24    # There are 24 CPU cores on P100 Cedar GPU nodes
#SBATCH --mem=0               # Request the full memory of the node
#SBATCH --time=3:00
#SBATCH --account=def-someuser
hostname
nvidia-smi


Packing single-GPU jobs within one SLURM job[edit]

If you need to run four single-GPU programs or two 2-GPU programs for longer than 24 hours, GNU Parallel is recommended. A simple example is given below:

cat params.input | parallel -j4 'CUDA_VISIBLE_DEVICES=$(({%} - 1)) python {} &> {#}.out'

In this example the GPU ID is calculated by subtracting 1 from the slot ID {%}. {#} is the job ID, starting from 1.

A params.input file should include input parameters in each line, like this:

code1.py
code2.py
code3.py
code4.py
...

With this method, users can run multiple tasks in one submission. The -j4 parameter means GNU Parallel can run a maximum of four concurrent tasks, launching another as soon as each one ends. CUDA_VISIBLE_DEVICES is used to ensure that two tasks do not try to use the same GPU at the same time.

Caveat[edit]

RNN and multi-head attention API calls may exhibit non-deterministic behavior when the cuDNN library is built with CUDA Toolkit 10.2 or higher. The user can eliminate the non-deterministic behavior of cuDNN RNN and multi-head attention APIs by setting a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for example, :16:8 or :4096:2, which instructs cuBLAS to allocate eight buffers of 16 KB each in GPU memory or two buffers of 4 MB each.