OpenMM: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<translate> | <translate> | ||
=Introduction= <!--T:1--> | =Introduction= <!--T:1--> | ||
OpenMM<ref name="OpenMM_home">OpenMM | OpenMM<ref name="OpenMM_home">OpenMM home page: https://openmm.org/</ref> is a toolkit for molecular simulation. It can be used either as a standalone application for running simulations or as a library you call from your own code. It provides a combination of extreme flexibility (through custom forces and integrators), openness, and high performance (especially on recent GPUs) that make it unique among MD simulation packages. | ||
= Running a simulation with AMBER topology and restart files = <!--T:2--> | = Running a simulation with AMBER topology and restart files = <!--T:2--> | ||
Line 13: | Line 13: | ||
<!--T:5--> | <!--T:5--> | ||
1. Create and activate Python virtual environment | 1. Create and activate the Python virtual environment. | ||
{{Commands|prompt=[name@server ~] | {{Commands|prompt=[name@server ~] | ||
| module load python | | module load python | ||
Line 21: | Line 21: | ||
<!--T:6--> | <!--T:6--> | ||
2. Install ParmEd and netCDF4 Python modules | 2. Install ParmEd and netCDF4 Python modules. | ||
{{Commands|prompt=(env-parmed)[name@server ~] | {{Commands|prompt=(env-parmed)[name@server ~] | ||
| pip install --no-index parmed{{=}}{{=}}3.4.3 netCDF4 | | pip install --no-index parmed{{=}}{{=}}3.4.3 netCDF4 | ||
Line 51: | Line 51: | ||
<translate> | <translate> | ||
<!--T:10--> | <!--T:10--> | ||
Here openmm_input.py is a | Here <code>openmm_input.py</code> is a Python script loading Amber files, creating the OpenMM simulation system, setting up the integration, and running dynamics. An example is available [https://mdbench.ace-net.ca/mdbench/idbenchmark/?q=129 here]. | ||
== Performance == <!--T:11--> | == Performance == <!--T:11--> | ||
OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Narval&gpu_model=&cpu_model=&arch=&dataset=6n4o Narval benchmarks] and [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=V100-SXM2&cpu_model=&arch=&dataset=6n4o Cedar benchmarks], on nodes with NvLink (where GPUs are connected directly) OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs ([https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=P100-PCIE&cpu_model=&arch=&dataset=6n4o Cedar benchmarks]). | OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Narval&gpu_model=&cpu_model=&arch=&dataset=6n4o Narval benchmarks] and [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=V100-SXM2&cpu_model=&arch=&dataset=6n4o Cedar benchmarks], on nodes with NvLink (where GPUs are connected directly), OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs ([https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=P100-PCIE&cpu_model=&arch=&dataset=6n4o Cedar benchmarks]). | ||
</translate> | </translate> |
Revision as of 21:09, 30 March 2023
Introduction
OpenMM[1] is a toolkit for molecular simulation. It can be used either as a standalone application for running simulations or as a library you call from your own code. It provides a combination of extreme flexibility (through custom forces and integrators), openness, and high performance (especially on recent GPUs) that make it unique among MD simulation packages.
Running a simulation with AMBER topology and restart files
Preparing the Python virtual environment
This example is for the openmm/7.7.0 module.
1. Create and activate the Python virtual environment.
[name@server ~] module load python
[name@server ~] virtualenv $HOME/env-parmed
[name@server ~] source $HOME/env-parmed/bin/activate
2. Install ParmEd and netCDF4 Python modules.
(env-parmed)[name@server ~] pip install --no-index parmed==3.4.3 netCDF4
Job submission
Below is a job script for a simulation using one GPU.
#!/bin/bash
#SBATCH --cpus-per-task=1
#SBATCH --gpus=1
#SBATCH --mem-per-cpu=4000M
#SBATCH --time=0-01:00:00
# Usage: sbatch $0
module purge
module load StdEnv/2020 gcc/9.3.0 cuda/11.4 openmpi/4.0.3
module load python/3.8.10 openmm/7.7.0 netcdf/4.7.4 hdf5/1.10.6 mpi4py/3.0.3
source $HOME/env-parmed/bin/activate
python openmm_input.py
Here openmm_input.py
is a Python script loading Amber files, creating the OpenMM simulation system, setting up the integration, and running dynamics. An example is available here.
Performance
OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from Narval benchmarks and Cedar benchmarks, on nodes with NvLink (where GPUs are connected directly), OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs (Cedar benchmarks).
- ↑ OpenMM home page: https://openmm.org/