OpenMM: Difference between revisions
mNo edit summary |
(Marked this version for translation) |
||
(33 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
=Introduction= | <languages /> | ||
OpenMM is a toolkit for molecular simulation. It can be used either as a | [[Category:Software]][[Category:BiomolecularSimulation]] | ||
<translate> | |||
=Introduction= <!--T:1--> | |||
OpenMM<ref name="OpenMM_home">OpenMM home page: https://openmm.org/</ref> is a toolkit for molecular simulation. It can be used either as a standalone application for running simulations or as a library you call from your own code. It provides a combination of extreme flexibility (through custom forces and integrators), openness, and high performance (especially on recent GPUs) that make it unique among MD simulation packages. | |||
= Running | = Running a simulation with AMBER topology and restart files = <!--T:2--> | ||
== Preparing Python | == Preparing the Python virtual environment == <!--T:3--> | ||
<!--T:4--> | |||
This example is for the openmm/7.7.0 module. | |||
<!--T:5--> | |||
1. Create and activate the Python virtual environment. | |||
{{Commands|prompt=[name@server ~] | |||
| module load python | |||
| virtualenv $HOME/env-parmed | |||
| source $HOME/env-parmed/bin/activate | |||
}} | |||
<!--T:6--> | |||
2. Install ParmEd and netCDF4 Python modules. | |||
{{Commands|prompt=(env-parmed)[name@server ~] | |||
| pip install --no-index parmed{{=}}{{=}}3.4.3 netCDF4 | |||
}} | |||
== Job submission == <!--T:7--> | |||
Below is a job script for a simulation using one GPU. | |||
</translate> | |||
{{File | {{File | ||
|name=submit_openmm.cuda.sh | |name=submit_openmm.cuda.sh | ||
Line 13: | Line 35: | ||
|contents= | |contents= | ||
#!/bin/bash | #!/bin/bash | ||
#SBATCH - | #SBATCH --cpus-per-task=1 | ||
#SBATCH --mem-per-cpu= | #SBATCH --gpus=1 | ||
#SBATCH --mem-per-cpu=4000M | |||
#SBATCH --time=0-01:00:00 | |||
# Usage: sbatch $0 | # Usage: sbatch $0 | ||
module purge | module purge | ||
module load StdEnv/2020 gcc/9.3.0 cuda/11.4 openmpi/4.0.3 | |||
module load python/3.8.10 openmm/7.7.0 netcdf/4.7.4 hdf5/1.10.6 mpi4py/3.0.3 | |||
source env-parmed/bin/activate | source $HOME/env-parmed/bin/activate | ||
python openmm_input.py | python openmm_input.py | ||
}} | }} | ||
<translate> | |||
<!--T:10--> | |||
Here <code>openmm_input.py</code> is a Python script loading Amber files, creating the OpenMM simulation system, setting up the integration, and running dynamics. An example is available [https://mdbench.ace-net.ca/mdbench/idbenchmark/?q=129 here]. | |||
= Performance and benchmarking = <!--T:12--> | |||
<!--T:13--> | |||
A team at [https://www.ace-net.ca/ ACENET] has created a [https://mdbench.ace-net.ca/mdbench/ Molecular Dynamics Performance Guide] for Alliance clusters. | |||
It can help you determine optimal conditions for AMBER, GROMACS, NAMD, and OpenMM jobs. The present section focuses on OpenMM performance. | |||
<!--T:11--> | |||
OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Narval&gpu_model=&cpu_model=&arch=&dataset=6n4o Narval benchmarks] and [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=V100-SXM2&cpu_model=&arch=&dataset=6n4o Cedar benchmarks], on nodes with NvLink (where GPUs are connected directly), OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs ([https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=P100-PCIE&cpu_model=&arch=&dataset=6n4o Cedar benchmarks]). | |||
</translate> |
Latest revision as of 16:58, 16 October 2024
Introduction
OpenMM[1] is a toolkit for molecular simulation. It can be used either as a standalone application for running simulations or as a library you call from your own code. It provides a combination of extreme flexibility (through custom forces and integrators), openness, and high performance (especially on recent GPUs) that make it unique among MD simulation packages.
Running a simulation with AMBER topology and restart files
Preparing the Python virtual environment
This example is for the openmm/7.7.0 module.
1. Create and activate the Python virtual environment.
[name@server ~] module load python
[name@server ~] virtualenv $HOME/env-parmed
[name@server ~] source $HOME/env-parmed/bin/activate
2. Install ParmEd and netCDF4 Python modules.
(env-parmed)[name@server ~] pip install --no-index parmed==3.4.3 netCDF4
Job submission
Below is a job script for a simulation using one GPU.
#!/bin/bash
#SBATCH --cpus-per-task=1
#SBATCH --gpus=1
#SBATCH --mem-per-cpu=4000M
#SBATCH --time=0-01:00:00
# Usage: sbatch $0
module purge
module load StdEnv/2020 gcc/9.3.0 cuda/11.4 openmpi/4.0.3
module load python/3.8.10 openmm/7.7.0 netcdf/4.7.4 hdf5/1.10.6 mpi4py/3.0.3
source $HOME/env-parmed/bin/activate
python openmm_input.py
Here openmm_input.py
is a Python script loading Amber files, creating the OpenMM simulation system, setting up the integration, and running dynamics. An example is available here.
Performance and benchmarking
A team at ACENET has created a Molecular Dynamics Performance Guide for Alliance clusters. It can help you determine optimal conditions for AMBER, GROMACS, NAMD, and OpenMM jobs. The present section focuses on OpenMM performance.
OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from Narval benchmarks and Cedar benchmarks, on nodes with NvLink (where GPUs are connected directly), OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs (Cedar benchmarks).
- ↑ OpenMM home page: https://openmm.org/