Hyper-Q / MPS/fr: Difference between revisions

From Alliance Doc
Jump to navigation Jump to search
(Updating to match new version of source page)
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 4: Line 4:
==Aperçu==
==Aperçu==


Hyper-Q (ou MPS) est une fonctionnalité des GPU de NVIDIA avec capacité de calcul CUDA 3.5 et plus,<ref>Voir le tableau des modèles, architectures et capacités de calcul CUDA dans [https://en.wikipedia.org/wiki/Nvidia_Tesla https://en.wikipedia.org/wiki/Nvidia_Tesla].</ref>
Hyper-Q (ou MPS pour <i>Multi-Process Service</i>) est une fonctionnalité des GPU de NVIDIA qui sont compatibles avec les versions 3.5 et plus récentes de CUDA <ref>Voir le tableau des modèles, architectures et capacités de calcul CUDA dans [https://en.wikipedia.org/wiki/Nvidia_Tesla https://en.wikipedia.org/wiki/Nvidia_Tesla].</ref>
ce qui est le cas pour toutes nos grappes d'usage général (Béluga, Cedar, Graham et Narval).
ce qui est le cas pour toutes nos grappes d'usage général (Béluga, Cedar, Graham et Narval).


<div lang="en" dir="ltr" class="mw-content-ltr">
[https://docs.nvidia.com/deploy/mps/index.html Selon la documentation de NVIDIA],
[https://docs.nvidia.com/deploy/mps/index.html According to NVIDIA],
::<i>[traduction libre]L'architecture d'exécution MPS est conçue pour permettre de façon transparente l'utilisation d'applications CUDA parallèles et coopératives (comme le sont typiquement les tâches MPI) en tirant avantage des fonctionnalités Hyper-Q des derniers GPU de NVIDIA (Kepler et suivants). Hyper-Q permet aux noyaux CUDA d’être traités en simultané sur un même GPU, ce qui améliore la performance quand la capacité de calcul du GPU est sous-utilisée par un seul processus.</i>
::<i>The MPS runtime architecture is designed to transparently enable co-operative multi-process CUDA applications, typically MPI jobs, to utilize Hyper-Q capabilities on the latest NVIDIA (Kepler and later) GPUs. Hyper-Q allows CUDA kernels to be processed concurrently on the same GPU; this can benefit performance when the GPU compute capacity is underutilized by a single application process.</i>
</div>




Nos tests ont démontré que MPS peut augmenter le nombre d'opérations en virgule flottante (<i>flops</i>) même quand le GPU est partagé avec des processus CPU qui ne sont pas reliés. Ceci signifie que MPS est idéal pour des applications CUDA qui traitent des problèmes de relativement petite taille qui par eux-mêmes sont incapables de bien saturer les GPU modernes qui ont des milliers de cœurs.  
Nos tests ont démontré que MPS peut augmenter le nombre d'opérations en virgule flottante effectuées par seconde (flops) même quand le GPU est partagé entre des processus CPU qui ne sont pas reliés. Ceci signifie que MPS est la fonctionnalité idéale pour des applications CUDA qui traitent des problèmes dont leur taille relativement petite les rend incapables de bien occuper les GPU modernes dotés de milliers de cœurs.  


MPS n'est pas actif par défaut, mais il suffit de lancer les commandes suivantes avant de lancer votre application CUDA.
MPS n'est pas activée par défaut, mais il suffit de lancer les commandes suivantes avant de démarrer votre application CUDA.


  {{Commands|export CUDA_MPS_PIPE_DIRECTORY{{=}}/tmp/nvidia-mps
  {{Commands|export CUDA_MPS_PIPE_DIRECTORY{{=}}/tmp/nvidia-mps
Line 21: Line 19:
|nvidia-cuda-mps-control -d}}
|nvidia-cuda-mps-control -d}}


Vous pouvez alors utiliser la fonctionnalité MPS si vous avez plus d'un fil CPU qui a accjs au GPU. Ceci se produit quand vous exécutez une application hybride MPI/CUDA, une application hybride OpenMP/CUDA application ou plusieurs applications séquentielles CUDA (<i>GPU farming</i>).
Vous pouvez alors utiliser MPS si vous avez plus d'un fil CPU qui a accès au GPU. Ceci se produit quand vous exécutez une application hybride MPI/CUDA, une application hybride OpenMP/CUDA ou plusieurs applications séquentielles CUDA (<i>GPU farming</i>).


Pour plus d'information sur MPS, voir [https://docs.nvidia.com/deploy/mps/index.html la documentation de NVIDIA].
Pour plus d'information sur MPS, voir [https://docs.nvidia.com/deploy/mps/index.html la documentation de NVIDIA].


==Farming avec GPU==
==<i>Farming</i> avec un GPU==


<div lang="en" dir="ltr" class="mw-content-ltr">
La fonctionnalité MPS est très utile pour exécuter plusieurs instances d’une même application CUDA quand celle-ci est trop petite pour occuper entièrement un GPU moderne. MPS vous permet d’exécuter toutes ces instances, pourvu que la mémoire du GPU soit suffisante. Dans plusieurs cas, la production de résultats pourrait être grandement augmentée.
One situation when the MPS feature can be very useful is when you need to run multiple instances of a CUDA application, but the application is too small to saturate a modern GPU. MPS allows you to run multiple instances of the application sharing a single GPU, as long as there is enough of GPU memory for all of the instances of the application. In many cases this should result in a significantly increased throughput from all of your GPU processes.
</div>


Le script suivant est un exemple pour configurer le farming avec GPU.
Le script suivant est un exemple pour configurer le farming avec un GPU.


  {{File|name=script.sh
  {{File|name=script.sh
Line 45: Line 41:
nvidia-cuda-mps-control -d
nvidia-cuda-mps-control -d
   
   
for ((i=0; i<8; i++))
for ((i=0; i<SLURM_CPUS_PER_TASK; i++))
  do
  do
  echo $i
  echo $i
Line 54: Line 50:
}}
}}


<div lang="en" dir="ltr" class="mw-content-ltr">
Dans cet exemple, un GPU de type V100 est partagé par 8 instances de <code>my_code</code> qui n’a comme argument que l’indice de boucle <code>$i</code>. Comme nous demandons 8 cœurs CPU (#SBATCH --cpus-per-task=8), il y a un cœur CPU pour chacune des instances de l’application. Les deux éléments importants sont
In the above example, we share a single V100 GPU between 8 instances of <code>my_code</code> (which takes a single argument-- the loop index $i). We request 8 CPU cores (#SBATCH -c 8) so there is one CPU core per application instance. The two important elements are
* <code>&</code> sur la ligne d’exécution du code qui déplace les processus à l’arrière-plan et
* <code>&</code> on the code execution line, which sends the code processes to the background, and
* la commande <code>wait</code> à la fin du script qui fait en sorte que la ferme de GPU se poursuive jusqu’à ce que tous les processus en arrière-plan soient terminés.
* the <code>wait</code> command at the end of the script, which ensures that the job runs until all background processes end.
</div>


[[Category:Software]]
[[Category:Software]]

Latest revision as of 20:00, 14 December 2023

Other languages:


Aperçu

Hyper-Q (ou MPS pour Multi-Process Service) est une fonctionnalité des GPU de NVIDIA qui sont compatibles avec les versions 3.5 et plus récentes de CUDA [1] ce qui est le cas pour toutes nos grappes d'usage général (Béluga, Cedar, Graham et Narval).

Selon la documentation de NVIDIA,

[traduction libre]L'architecture d'exécution MPS est conçue pour permettre de façon transparente l'utilisation d'applications CUDA parallèles et coopératives (comme le sont typiquement les tâches MPI) en tirant avantage des fonctionnalités Hyper-Q des derniers GPU de NVIDIA (Kepler et suivants). Hyper-Q permet aux noyaux CUDA d’être traités en simultané sur un même GPU, ce qui améliore la performance quand la capacité de calcul du GPU est sous-utilisée par un seul processus.


Nos tests ont démontré que MPS peut augmenter le nombre d'opérations en virgule flottante effectuées par seconde (flops) même quand le GPU est partagé entre des processus CPU qui ne sont pas reliés. Ceci signifie que MPS est la fonctionnalité idéale pour des applications CUDA qui traitent des problèmes dont leur taille relativement petite les rend incapables de bien occuper les GPU modernes dotés de milliers de cœurs.

MPS n'est pas activée par défaut, mais il suffit de lancer les commandes suivantes avant de démarrer votre application CUDA.

[name@server ~]$ export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps
[name@server ~]$ export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
[name@server ~]$ nvidia-cuda-mps-control -d


Vous pouvez alors utiliser MPS si vous avez plus d'un fil CPU qui a accès au GPU. Ceci se produit quand vous exécutez une application hybride MPI/CUDA, une application hybride OpenMP/CUDA ou plusieurs applications séquentielles CUDA (GPU farming).

Pour plus d'information sur MPS, voir la documentation de NVIDIA.

Farming avec un GPU

La fonctionnalité MPS est très utile pour exécuter plusieurs instances d’une même application CUDA quand celle-ci est trop petite pour occuper entièrement un GPU moderne. MPS vous permet d’exécuter toutes ces instances, pourvu que la mémoire du GPU soit suffisante. Dans plusieurs cas, la production de résultats pourrait être grandement augmentée.

Le script suivant est un exemple pour configurer le farming avec un GPU.


File : script.sh

#!/bin/bash
#SBATCH --gpus-per-node=v100:1
#SBATCH --time=0-10:00
#SBATCH --mem-per-cpu=8G
#SBATCH --cpus-per-task=8
 
mkdir -p $HOME/tmp
export CUDA_MPS_LOG_DIRECTORY=$HOME/tmp
nvidia-cuda-mps-control -d
 
for ((i=0; i<SLURM_CPUS_PER_TASK; i++))
 do
 echo $i
 ./my_code $i  &
 done
 
wait


Dans cet exemple, un GPU de type V100 est partagé par 8 instances de my_code qui n’a comme argument que l’indice de boucle $i. Comme nous demandons 8 cœurs CPU (#SBATCH --cpus-per-task=8), il y a un cœur CPU pour chacune des instances de l’application. Les deux éléments importants sont

  • & sur la ligne d’exécution du code qui déplace les processus à l’arrière-plan et
  • la commande wait à la fin du script qui fait en sorte que la ferme de GPU se poursuive jusqu’à ce que tous les processus en arrière-plan soient terminés.
  1. Voir le tableau des modèles, architectures et capacités de calcul CUDA dans https://en.wikipedia.org/wiki/Nvidia_Tesla.