PyKeOps: Difference between revisions
No edit summary |
No edit summary |
||
Line 15: | Line 15: | ||
}} | }} | ||
= Installing PyKeOps in a Python virtual environment = <!--T:3--> | = Installing PyKeOps in a [[Python#Creating_and_using_a_virtual_environment | Python virtual environment]] = <!--T:3--> | ||
1. Load runtime dependencies. | 1. Load runtime dependencies. | ||
{{Command|module load StdEnv/2023 python/3.11}} | {{Command|module load StdEnv/2023 python/3.11}} |
Revision as of 18:35, 30 September 2024
The KeOps library lets you compute reductions of large arrays whose entries are given by a mathematical formula or a neural network. It combines efficient C++ routines with an automatic differentiation engine and can be used with Python (NumPy, PyTorch), MATLAB and R.
Available versions
PyKeOps is available on our clusters as prebuilt Python packages (wheels). You can list available versions with avail_wheels
.
[name@server ~]$ avail_wheels pykeops
name version python arch
------- --------- -------- -------
pykeops 2.2.3 py3 generic
Installing PyKeOps in a Python virtual environment
1. Load runtime dependencies.
[name@server ~]$ module load StdEnv/2023 python/3.11
2. Create and activate a Python virtual environment.
[name@server ~]$ virtualenv --no-download ~/pykeops_env
[name@server ~]$ source ~/pykeops_env/bin/activate
3. Install a specific version of PyKeOps and its Python dependencies.
(pykeops_env) [name@server ~] pip install --no-index --upgrade pip
(pykeops_env) [name@server ~] pip install --no-index pykeops==X.Y.Z
where X.Y.Z
is the exact desired version, for instance 2.2.3
.
You can omit to specify the version in order to install the latest one available from the wheelhouse.
4. Validate it.
(pykeops_env) [name@server ~] python -c 'import pykeops; pykeops.test_numpy_bindings()'
5. Freeze the environment and requirements set.
(pykeops_env) [name@server ~] pip freeze --local > ~/pykeops-2.2.3-requirements.txt
6. Remove the local virtual environment.
(pykeops_env) [name@server ~] deactivate && rm -r ~/pykeops_env
Running KeOps
You can run PyKeOps on CPU or GPU.
1. Write your job submission script.
#!/bin/bash
#SBATCH --account=def-someprof # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00 # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=4 # adjust this to match the number of cores to use
#SBATCH --mem-per-cpu=4G # adjust this according to the memory you need per cpu
# Load modules dependencies.
module load StdEnv/2023 python/3.11
# create the virtual environment on the compute node:
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index --upgrade pip
pip install --no-index -r pykeops-2.2.3-requirements.txt
# test that everything is OK
python -c 'import pykeops; pykeops.test_numpy_bindings()'
#!/bin/bash
#SBATCH --account=def-someprof # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00 # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=4 # adjust this to match the number of cores to use
#SBATCH --mem-per-cpu=4G # adjust this according to the memory you need per cpu
#SBATCH --gpus=1
# Load modules dependencies. The custom-ctypes is critical here.
module load StdEnv/2023 python/3.11 cuda/12 custom-ctypes
# create the virtual environment on the compute node:
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index --upgrade pip
pip install --no-index -r pykeops-2.2.3-requirements.txt
# test that nvrtc binding are also found
python -c 'import pykeops; pykeops.test_numpy_bindings()'
2. Before submitting your job, it is important to test that your submission script will start without errors. You can do a quick test in an interactive job.
3. Submit your job to the scheduler.
[name@server ~]$ sbatch submit-keops.sh