Weights & Biases (wandb): Difference between revisions
(Marked this version for translation) |
No edit summary |
||
Line 18: | Line 18: | ||
! Cluster !! Availability !! Note | ! Cluster !! Availability !! Note | ||
|- | |- | ||
| Béluga || | | Béluga || No ❌ || Wandb requires access to Google Cloud Storage, which is not available on Béluga | ||
|- | |- | ||
| Cedar || Yes ✅ || Internet access is enabled | | Cedar || Yes ✅ || Internet access is enabled |
Revision as of 16:18, 10 March 2021
Weights & Biases (wandb) is a "meta machine learning platform" designed to help AI practitioners and teams build reliable machine learning models for real-world applications by streamlining the machine learning model lifecycle. By using wandb, users can track, compare, explain and reproduce their machine learning experiments.
Using wandb on Compute Canada clusters
Availability
Since it requires an internet connection, wandb has restricted availability on compute nodes, depending on the cluster:
Cluster | Availability | Note |
---|---|---|
Béluga | No ❌ | Wandb requires access to Google Cloud Storage, which is not available on Béluga |
Cedar | Yes ✅ | Internet access is enabled |
Graham | No ❌ | Internet access is disabled on compute nodes |
Example
The following is an example of how to use wandb to track experiments on Béluga. To reproduce this on Cedar, it is not necessary to load the module httpproxy.
#!/bin/bash
#SBATCH --cpus-per-task=1
#SBATCH --mem=2G
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out
module load python/3.6 httpproxy
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torchvision wandb --no-index
### Save your wandb API key in your .bash_profile or replace $API_KEY with your actual API key:
wandb login $API_KEY
python wandb-test.py
The script wandb-test.py uses the watch() method to log default metrics to Weights & Biases. See their full documentation for more options.
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import argparse
import wandb
parser = argparse.ArgumentParser(description='cifar10 classification models, wandb test')
parser.add_argument('--lr', default=0.1, help='')
parser.add_argument('--batch_size', type=int, default=768, help='')
parser.add_argument('--max_epochs', type=int, default=4, help='')
parser.add_argument('--num_workers', type=int, default=0, help='')
def main():
args = parser.parse_args()
print("Starting Wandb...")
wandb.init(project="wandb-pytorch-test", config=args)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
transform_train = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = CIFAR10(root='./data', train=True, download=False, transform=transform_train)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.num_workers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr)
wandb.watch(net)
for epoch in range(args.max_epochs):
train(epoch, net, criterion, optimizer, train_loader)
def train(epoch, net, criterion, optimizer, train_loader):
for batch_idx, (inputs, targets) in enumerate(train_loader):
outputs = net(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if __name__=='__main__':
main()