Weights & Biases (wandb)/fr: Difference between revisions
No edit summary |
No edit summary |
||
Line 54: | Line 54: | ||
pip install --no-index wandb | pip install --no-index wandb | ||
### Save your wandb API key in your .bash_profile or replace $API_KEY with your actual API key. Uncomment the line below and comment out <code>wandb offline</code>. if running on Cedar ### | |||
### Save your wandb API key in your .bash_profile or replace $API_KEY with your actual API key. Uncomment the line below and comment out | |||
#wandb login $API_KEY | #wandb login $API_KEY |
Revision as of 22:13, 25 July 2023
Weights & Biases (wandb) est une plateforme de méta-apprentissage machine qui permet de construire des modèles pour des applications concrètes. La plateforme permet de suivre, comparer, décrire et reproduire les expériences d'apprentissage machine.
Utilisation sur nos grappes
Disponibilité sur les nœuds de calcul
Puisque wandb exige une connexion à l'internet, sa disponibilité sur les nœuds de calcul dépend de la grappe.
Grappe | Disponible | |
---|---|---|
Béluga | non ❌ | rowspan="2"| Wandb nécessite l'accès à Google Cloud Storage, ce qui n'est pas possible sur les noeuds de calcul |
Narval | ||
Cedar | oui ✅ | accès internet activé |
Graham | non ❌ | accès internet désactivé sur les nœuds de calcul |
Béluga
S'il est possible de téléverser des métriques de base pour Weights&Biases par une tâche sur Béluga, le paquet wandb téléverse automatiquement de l'information sur l'environnement utilisé vers un compartiment (bucket) Google Cloud Storage, ce qui cause un plantage (crash) au cours d'un entrainement ou à sa toute fin; présentement, il est impossible de désactiver ce comportement. Le téléversement d'artefacts avec wandb.save()
nécessite aussi l'accès au Google Cloud Storage, ce qui n'est pas disponible sur les nœuds de calcul de Béluga.
Vous pouvez quand même utiliser wandb sur Béluga en activant les modes offline ou dryrun. Avec ces modes, wandb écrit tous les métriques, journalisations et artefacts sur le disque local, sans synchronisation avec le service internet Weights&Biases. Une fois les tâches terminées, vous pouvez faire la synchronisation avec la commande wandb sync sur le nœud de connexion.
Remarquez que le produit Comet.ml est très semblable à Weights & Biases et qu'il fonctionne sur Béluga.
Exemple
L'exemple suivant montre comment utiliser wandb pour le suivi de l'expérimentation sur Béluga. Pour reproduire ceci sur Cedar, il n'est pas nécessaire d'activer le mode hors ligne.
#!/bin/bash
#SBATCH --account=YOUR_ACCOUNT
#SBATCH --cpus-per-task=2 # Nous recommandons au moins 2 CPU (un pour le processus principal et un autre pour le processus WandB)
#SBATCH --mem=4G
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out
module load python/3.8
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index wandb
### Save your wandb API key in your .bash_profile or replace $API_KEY with your actual API key. Uncomment the line below and comment out <code>wandb offline</code>. if running on Cedar ###
#wandb login $API_KEY
wandb offline
python wandb-test.py
Le script wandb-test.py est un exemple simple de journalisation des métriques. Pour d'autres options, voyez la documentation complète de W&B.
import wandb
wandb.init(project="wandb-pytorch-test", settings=wandb.Settings(start_method="fork"))
for my_metric in range(10):
wandb.log({'my_metric': my_metric})
Après que l'entraînement a été effectué en mode hors ligne, vous aurez le nouveau répertoire ./wandb/offline-run*
. Pour envoyer les métriques au serveur, utilisez la commande wandb sync ./wandb/offline-run*
où l'astérisque synchronise toutes les exécutions.