Snowflurry/en: Difference between revisions

From Alliance Doc
Jump to navigation Jump to search
(Updating to match new version of source page)
No edit summary
Line 1: Line 1:
<languages />
<languages />
<div lang="fr" dir="ltr" class="mw-content-ltr">
== Snowflurry ==
== Snowflurry ==
[https://github.com/SnowflurrySDK/Snowflurry.jl/ Snowflurry] est une librairie d'informatique quantique à code source ouvert développée en [https://julialang.org/ Julia] par [https://anyonsys.com/ Anyon Systems] qui permet de construire, de simuler et d'exécuter des circuits quantiques.
Developed in [https://julialang.org/ Julia] by [https://anyonsys.com/ Anyon Systems], [https://github.com/SnowflurrySDK/Snowflurry.jl/ Snowflurry] is an open-source quantum computing library to build, simulate and run quantum circuits. A related library called [https://github.com/SnowflurrySDK/SnowflurryPlots.jl/ SnowflurryPlots] allows you to visualize simulation results in a bar graph. Useful to explore quantum computing, its features are described in the [https://snowflurrysdk.github.io/Snowflurry.jl/dev/index.html documentation]   and the [https://github.com/SnowflurrySDK/Snowflurry.jl installation guide is available on the GitHub page]. Like the [[PennyLane/en|PennyLane]] library, Snowflurry can be used to run quantum circuits on the [[MonarQ/en|MonarQ]] quantum computer.
Une librairie connexe nommée [https://github.com/SnowflurrySDK/SnowflurryPlots.jl/ SnowflurryPlots] permet de visualiser les résultats de la simulation dans un diagramme à bandes. Pratique pour explorer l'informatique quantique, les fonctionnalitées des librairies sont disponibles dans la [https://snowflurrysdk.github.io/Snowflurry.jl/dev/index.html documentation] et le guide d'installation est disponible sur la page [https://github.com/SnowflurrySDK/Snowflurry.jl GitHub]. Tout comme la librairie [[PennyLane]], Snowflurry peut être utilisée pour exécuter des circuits quantiques sur l'ordinateur quantique [[Les services quantiques|MonarQ]].
</div>


<div class="mw-translate-fuzzy">
== Installation ==
== Installation ==
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
<div lang="fr" dir="ltr" class="mw-content-ltr">

Revision as of 20:18, 30 September 2024

Other languages:

Snowflurry

Developed in Julia by Anyon Systems, Snowflurry is an open-source quantum computing library to build, simulate and run quantum circuits. A related library called SnowflurryPlots allows you to visualize simulation results in a bar graph. Useful to explore quantum computing, its features are described in the documentation and the installation guide is available on the GitHub page. Like the PennyLane library, Snowflurry can be used to run quantum circuits on the MonarQ quantum computer.

Installation

Exemple d'utilisation : États de Bell

Les états de Bell sont des états à deux qubits maximalement intriqués. Ce sont des exemples simples de deux phénomènes quantiques : la superposition et l'intrication. La librairie Snowflurry permet de construire le premier état de Bell comme suit.

Question.png
[name@server ~]$ julia
julia> using Snowflurry
julia> circuit=QuantumCircuit(qubit_count=2);
julia> push!(circuit,hadamard(1));
julia> push!(circuit,control_x(1,2));
julia> print(circuit)
</div>

<div lang="fr" dir="ltr" class="mw-content-ltr">
Quantum Circuit Object:
   qubit_count: 2 
q[1]:──H────*──
            ¦ 
q[2]:───────X──

Dans la section de code ci-dessus, la porte de Hadamard crée une superposition égale de |0⟩ et |1⟩ sur le premier qubit tandis que la porte CNOT (porte X controllée) crée une intrication entre les deux qubits. On retrouve une superposition égale des états |00⟩ et |11⟩, soit le premier état de Bell. La fonction simulate permet de simuler l'état exact du système.

 julia> state = simulate(circuit)
 julia> print(state)   
 4-element Ket{ComplexF64}:
 0.7071067811865475 + 0.0im
 0.0 + 0.0im
 0.0 + 0.0im
 0.7071067811865475 + 0.0im

Pour effectuer une mesure, l'opération readout permet de spécifier quels qubits seront mesurés. La bibliothèque SnowflurryPlots et la fonction plot_histogram permettent de visualiser les résultats.

Question.png
[name@server ~]$ julia
julia> using SnowflurryPlots
julia> push!(circuit, readout(1,1), readout(2,2))
julia> plot_histogram(circuit,1000)
Résultats de 1000 simulations de l'état de Bell.