Snowflurry/en: Difference between revisions

From Alliance Doc
Jump to navigation Jump to search
No edit summary
(Created page with "Quantum Circuit Object: qubit_count: 2 q[1]:──H────*── ¦ q[2]:───────X── }} </noinclude> In the above code section, the Hadamard gate creates an equal superposition of |0⟩ and |1⟩ on the first qubit while the CNOT gate (controlled X gate) creates an entanglement between the two qubits. We find an equal superposition of states |00⟩ and |11⟩, which is the first Bell state. The <code>simulate</code> function allows...")
Line 29: Line 29:
julia> print(circuit)
julia> print(circuit)


<div lang="fr" dir="ltr" class="mw-content-ltr">
Quantum Circuit Object:
Quantum Circuit Object:
   qubit_count: 2  
   qubit_count: 2  
Line 37: Line 36:
}}
}}
</noinclude>
</noinclude>
Dans la section de code ci-dessus, la porte de Hadamard crée une superposition égale de |0⟩ et |1⟩ sur le premier qubit tandis que la porte CNOT (porte X controllée) crée une intrication entre les deux qubits. On retrouve une superposition égale des états |00⟩ et |11⟩, soit le premier état de Bell. La fonction <code>simulate</code> permet de simuler l'état exact du système.
In the above code section, the Hadamard gate creates an equal superposition of |0⟩ and |1⟩ on the first qubit while the CNOT gate (controlled X gate) creates an entanglement between the two qubits. We find an equal superposition of states |00⟩ and |11⟩, which is the first Bell state. The <code>simulate</code> function allows us to simulate the exact state of the system.
<noinclude>
<noinclude>
   julia> state = simulate(circuit)
   julia> state = simulate(circuit)
Line 47: Line 46:
   0.7071067811865475 + 0.0im
   0.7071067811865475 + 0.0im
</noinclude>
</noinclude>
</div>


<div lang="fr" dir="ltr" class="mw-content-ltr">
<div lang="fr" dir="ltr" class="mw-content-ltr">

Revision as of 20:29, 30 September 2024

Other languages:

Snowflurry

Developed in Julia by Anyon Systems, Snowflurry is an open-source quantum computing library to build, simulate and run quantum circuits. A related library called SnowflurryPlots shows simulation results in a bar graph. Useful to explore quantum computing, its features are described in the documentation and the installation guide is available on the GitHub page. Like the PennyLane library, Snowflurry can be used to run quantum circuits on the MonarQ quantum computer.

Installation

Le simulateur d'ordinateur quantique avec Snowflurry est accessible sur toutes nos grappes. Avant d'avoir accès à Snowflurry, il faur charger le langage de programmation Julia avec la commande

Question.png
[name@server ~]$ module load julia

The Julia programming interface is then called and the Snowflurry quantum library is loaded (about 5-10 minutes) with the commands

Question.png
[name@server ~]$ julia
julia> import Pkg
julia> Pkg.add(url="https://github.com/SnowflurrySDK/Snowflurry.jl", rev="main")
julia> Pkg.add(url="https://github.com/SnowflurrySDK/SnowflurryPlots.jl", rev="main")
julia> using Snowflurry

Quantum logic gates and commands are described in the Snowflurry documentation.

Use case: Bell states

Bell states are maximally entangled two-qubit states. They are simple examples of two quantum phenomena: superposition and entanglement. The Snowflurry library allows to construct the first Bell state as follows:

Question.png
[name@server ~]$ julia
julia> using Snowflurry
julia> circuit=QuantumCircuit(qubit_count=2);
julia> push!(circuit,hadamard(1));
julia> push!(circuit,control_x(1,2));
julia> print(circuit)

Quantum Circuit Object:
   qubit_count: 2 
q[1]:──H────*──
            ¦ 
q[2]:───────X──

In the above code section, the Hadamard gate creates an equal superposition of |0⟩ and |1⟩ on the first qubit while the CNOT gate (controlled X gate) creates an entanglement between the two qubits. We find an equal superposition of states |00⟩ and |11⟩, which is the first Bell state. The simulate function allows us to simulate the exact state of the system.

 julia> state = simulate(circuit)
 julia> print(state)   
 4-element Ket{ComplexF64}:
 0.7071067811865475 + 0.0im
 0.0 + 0.0im
 0.0 + 0.0im
 0.7071067811865475 + 0.0im


Pour effectuer une mesure, l'opération readout permet de spécifier quels qubits seront mesurés. La bibliothèque SnowflurryPlots et la fonction plot_histogram permettent de visualiser les résultats.

Question.png
[name@server ~]$ julia
julia> using SnowflurryPlots
julia> push!(circuit, readout(1,1), readout(2,2))
julia> plot_histogram(circuit,1000)
Résultats de 1000 simulations de l'état de Bell.