PyTorch/fr: Difference between revisions

From Alliance Doc
Jump to navigation Jump to search
(Created page with "Les développeurs PyTorch offrent aussi LibTorch qui permet d'implémenter des extensions à PyTorch à l'aide de C++ et d'implémenter des application...")
(Created page with "LibTorch permet d'implémenter des extensions à PyTorch à l'aide de C++ et d'implémenter des applications d'apprentissage machine en C++ pur. La distribution LibTorch poss...")
Line 104: Line 104:
= LibTorch =
= LibTorch =


LibTorch allows one to implement both C++ extensions to PyTorch and '''pure C++ machine learning applications'''. It contains "all headers, libraries and CMake configuration files required to depend on PyTorch" (as mentioned in the [https://pytorch.org/cppdocs/installing.html docs]).
LibTorch permet d'implémenter des extensions à PyTorch à l'aide de C++ et d'implémenter des applications d'apprentissage machine en C++ pur. La distribution LibTorch posssède les en-têtes, bibliothèques et fichiers de configuartion CMake néessaires pour travailler avec PyTorch (voir cette [https://pytorch.org/cppdocs/installing.html documentation]).
=== How to use LibTorch ===
=== Utiliser LibTorch ===


==== Obtenir la bibliothèque ====
==== Obtenir la bibliothèque ====

Revision as of 15:57, 29 July 2019

Other languages:

PyTorch est un paquet Python qui offre deux fonctionnalités de haut niveau :

  • le calcul tensoriel (semblable à celui effectué par NumPy) avec grande accélération de GPU,
  • des réseaux de neurones d’apprentissage profond dans un système de gradients conçu sur le modèle d’un magnétophone.

Il y a une certaine ressemblance entre PyTorch et Torch, mais pour des raisons pratiques vous pouvez considérer que ce sont des projets différents.

Les développeurs PyTorch offrent aussi LibTorch qui permet d'implémenter des extensions à PyTorch à l'aide de C++ et d'implémenter des applications d'apprentissage machine en C++ pur. Les modèles Python écrits avec PyTorch peuvent être convertis et utilisés en C++ avec TorchScript.

Installation

Wheels récemment ajoutés

Pour connaître la dernière version de PyTorch, utilisez

Question.png
[name@server ~]$ avail_wheels "torch*"

Voyez aussi Lister les wheels disponibles.

Installation du wheel Calcul Canada

La meilleure option est d'installer avec Python wheels comme suit :

1. Chargez un module Python, soit python/2.7, python/3.5, python/3.6 ou python/3.7.
2. Créez et démarrez un environnement virtuel.
3. Installez PyTorch dans l'environnement virtuel avec pip install.

GPU et CPU

Question.png
(venv) [name@server ~] pip install numpy torch --no-index

En supplément

En plus de torch, vous pouvez aussi installer torchvision, torchtext et torchaudio.

Question.png
(venv) [name@server ~] pip install torch torchvision torchtext torchaudio --no-index

Soumettre une tâche

Le script suivant est un exemple de soumission d'une tâche utilisant le wheel Python dans un environnement virtuel de $HOME/pytorch.

File : pytorch-test.sh

#!/bin/bash
#SBATCH --gres=gpu:1       # Request GPU "generic resources"
#SBATCH --cpus-per-task=6  # Cores proportional to GPUs: 6 on Cedar, 16 on Graham.
#SBATCH --mem=32000M       # Memory proportional to GPUs: 32000 Cedar, 64000 Graham.
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out

module load python/3.6
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torch --no-index

python pytorch-test.py


Le script Python pytorch-test.py est semblable à

File : pytorch-test.py

import torch
x = torch.Tensor(5, 3)
print(x)
y = torch.rand(5, 3)
print(y)
# let us run the following only if CUDA is available
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    print(x + y)


Vous pouvez alors soumettre une tâche PyTorch avec

Question.png
[name@server ~]$ sbatch pytorch-test.sh


Dépannage

Fuites de mémoire

Sur le matériel AVX512 (nœuds V100, Skylake ou Béluga), les versions PyTorch antérieures à v1.0.1 qui utilisent des bibliothèques moins récentes (cuDNN < v7.5 ou MAGMA < v2.5) peuvent avoir des fuites de mémoire importantes et créer des exceptions de mémoire insuffisante et terminer vos tâches. Pour contrer ceci, utilisez la plus récente version de torch.

LibTorch

LibTorch permet d'implémenter des extensions à PyTorch à l'aide de C++ et d'implémenter des applications d'apprentissage machine en C++ pur. La distribution LibTorch posssède les en-têtes, bibliothèques et fichiers de configuartion CMake néessaires pour travailler avec PyTorch (voir cette documentation).

Utiliser LibTorch

Obtenir la bibliothèque

wget https://download.pytorch.org/libtorch/cu100/libtorch-shared-with-deps-latest.zip
unzip libtorch-shared-with-deps-latest.zip
cd libtorch
export LIBTORCH_ROOT=$(pwd)  # this variable is used in the example below

Installez la rustine (pour compiler avec les grappes de Calcul Canada).

sed -i -e 's/\/usr\/local\/cuda\/lib64\/libculibos.a;dl;\/usr\/local\/cuda\/lib64\/libculibos.a;//g' share/cmake/Caffe2/Caffe2Targets.cmake

The library is also included in the PyTorch wheel, but this is not the recommended way to acquire it. Once Pytorch is installed in a virtual environment, you can find it at: $VIRTUAL_ENV/lib/python3.6/site-packages/torch/lib/libtorch.so.

Compiler un exemple simple

Créez les deux fichiers suivants :


File : example-app.cpp

#include <torch/torch.h>
#include <iostream>

int main() {
    torch::Device device(torch::kCPU);
    if (torch::cuda::is_available()) {
        std::cout << "CUDA is available! Using GPU." << std::endl;
        device = torch::Device(torch::kCUDA);
    }

    torch::Tensor tensor = torch::rand({2, 3}).to(device);
    std::cout << tensor << std::endl;
}



File : CMakeLists.txt

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(example-app)

find_package(Torch REQUIRED)

add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 11)


Chargez les modules.

module load cmake intel/2018.3 cuda/10 cudnn

Compilez le programme.

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH="$LIBTORCH_ROOT;$EBROOTCUDA;$EBROOTCUDNN" ..
make

Exécutez le programme.

./example-app

Pour tester une application avec CUDA, demandez une tâche interactive avec GPU.

Ressources

https://pytorch.org/cppdocs/