Weights & Biases (wandb)/fr: Difference between revisions
Jump to navigation
Jump to search
(Created page with "[https://wandb.ai Weights & Biases (wandb)] est une plateforme de méta-apprentissage machine qui permet de construire des modèles pour des applications concrètes. La platef...") |
No edit summary |
||
Line 14: | Line 14: | ||
! Grappe !! Disponible !! | ! Grappe !! Disponible !! | ||
|- | |- | ||
| Béluga || oui ✅ || avant d'utiliser wandb, chargez le module <tt>httpproxy</tt> | | Béluga || oui ✅ || avant d'utiliser wandb, chargez le module <tt>httpproxy</tt> avec <tt>module load httpproxy</tt> | ||
|- | |- | ||
| Cedar || oui ✅ || accès internet activé | | Cedar || oui ✅ || accès internet activé |
Revision as of 18:58, 8 February 2021
Weights & Biases (wandb) est une plateforme de méta-apprentissage machine qui permet de construire des modèles pour des applications concrètes. La plateforme permet de suivre, comparer, décrire et reproduire les expériences d'apprentissage machine.
Utilisation sur nos grappes
Disponibilité
Puisque wandb exige une connexion à l'internet, sa disponibilité sur les nœuds de calcul dépend de la grappe.
Grappe | Disponible | |
---|---|---|
Béluga | oui ✅ | avant d'utiliser wandb, chargez le module httpproxy avec module load httpproxy |
Cedar | oui ✅ | accès internet activé |
Graham | non ❌ | accès internet désactivé sur les nœuds de calcul |
Exemple
L'exemple suivant montre comment utiliser wandb pour le suivi de l'expérimentation sur Béluga. Pour reproduire ceci sur Cedar, il n'est pas nécessaire de charger le module httpproxy.
File : wandb-test.sh
#!/bin/bash
#SBATCH --cpus-per-task=1
#SBATCH --mem=2G
#SBATCH --time=0-03:00
#SBATCH --output=%N-%j.out
module load python/3.6 httpproxy
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install torchvision wandb --no-index
### Save your wandb API key in your .bash_profile or replace $API_KEY with your actual API key:
wandb login $API_KEY
python wandb-test.py
Le script wandb-test.py utilise la méthode watch() pour journaliser les métriques. Voir la documentation complète.
File : wandb-test.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import argparse
import wandb
parser = argparse.ArgumentParser(description='cifar10 classification models, wandb test')
parser.add_argument('--lr', default=0.1, help='')
parser.add_argument('--batch_size', type=int, default=768, help='')
parser.add_argument('--max_epochs', type=int, default=4, help='')
parser.add_argument('--num_workers', type=int, default=0, help='')
def main():
args = parser.parse_args()
print("Starting Wandb...")
wandb.init(project="wandb-pytorch-test", config=args)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
transform_train = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
dataset_train = CIFAR10(root='./data', train=True, download=False, transform=transform_train)
train_loader = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.num_workers)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr)
wandb.watch(net)
for epoch in range(args.max_epochs):
train(epoch, net, criterion, optimizer, train_loader)
def train(epoch, net, criterion, optimizer, train_loader):
for batch_idx, (inputs, targets) in enumerate(train_loader):
outputs = net(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if __name__=='__main__':
main()