rsnt_translations
56,430
edits
No edit summary |
(Marked this version for translation) |
||
Line 26: | Line 26: | ||
}} | }} | ||
== Job submission == | == Job submission == <!--T:7--> | ||
Below is a job script for a simulation using one GPU. | Below is a job script for a simulation using one GPU. | ||
</translate> | </translate> | ||
Line 53: | Line 53: | ||
Here openmm_input.py is a python script loading amber files, creating the OpenMM simulation system, setting up the integration, and running dynamics. Example openmm_input.py is available [https://mdbench.ace-net.ca/mdbench/idbenchmark/?q=129 here]. | Here openmm_input.py is a python script loading amber files, creating the OpenMM simulation system, setting up the integration, and running dynamics. Example openmm_input.py is available [https://mdbench.ace-net.ca/mdbench/idbenchmark/?q=129 here]. | ||
<!--T:11--> | == Performance == <!--T:11--> | ||
OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Narval&gpu_model=&cpu_model=&arch=&dataset=6n4o Narval benchmarks] and [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=V100-SXM2&cpu_model=&arch=&dataset=6n4o Cedar benchmarks], on nodes with NvLink (where GPUs are connected directly) OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs ([https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=P100-PCIE&cpu_model=&arch=&dataset=6n4o Cedar benchmarks]). | OpenMM on the CUDA platform requires only one CPU per GPU because it does not use CPUs for calculations. While OpenMM can use several GPUs in one node, the most efficient way to run simulations is to use a single GPU. As you can see from [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Narval&gpu_model=&cpu_model=&arch=&dataset=6n4o Narval benchmarks] and [https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=V100-SXM2&cpu_model=&arch=&dataset=6n4o Cedar benchmarks], on nodes with NvLink (where GPUs are connected directly) OpenMM runs slightly faster on multiple GPUs. Without NvLink there is a very little speedup of simulations on P100 GPUs ([https://mdbench.ace-net.ca/mdbench/bform/?software_contains=OPENMM.cuda&software_id=&module_contains=&module_version=&site_contains=Cedar&gpu_model=P100-PCIE&cpu_model=&arch=&dataset=6n4o Cedar benchmarks]). | ||
</translate> | </translate> |