PyKeOps
The KeOps library lets you compute reductions of large arrays whose entries are given by a mathematical formula or a neural network. It combines efficient C++ routines with an automatic differentiation engine and can be used with Python (NumPy, PyTorch), Matlab and R..
Available versions
PyKeOps is available on our clusters as prebuilt Python packages (wheels). You can list available versions with avail_wheels
.
[name@server ~]$ avail_wheels pykeops
name version python arch
------- --------- -------- -------
pykeops 2.2.3 py3 generic
Installing PyKeOps in a Python virtual environment
1. Load runtime dependencies.
[name@server ~]$ module load StdEnv/2023 python/3.11
2. Créez et activez un environnement virtuel Python.
[name@server ~]$ virtualenv --no-download ~/pykeops_env
[name@server ~]$ source ~/pykeops_env/bin/activate
3. Installez une version de PyKeOps avec ses dépendances Python.
(pykeops_env) [name@server ~] pip install --no-index --upgrade pip
(pykeops_env) [name@server ~] pip install --no-index pykeops==X.Y.Z
where X.Y.Z
is the exact desired version, for instance 2.2.3
.
You can omit to specify the version in order to install the latest one available from the wheelhouse.
4. Validez.
(pykeops_env) [name@server ~] python -c 'import pykeops; pykeops.test_numpy_bindings()'
5. Gelez l'environnement et l'ensemble des exigences.
(pykeops_env) [name@server ~] pip freeze --local > ~/pykeops-2.2.3-requirements.txt
6. Supprimez l'environnemnent virtuel local.
(pykeops_env) [name@server ~] deactivate && rm -r ~/pykeops_env
Exécution
Vous pouvez exécuter PyKeOps sur un CPU ou un GPU.
1. Préparez votre script d'exécution.
#!/bin/bash
#SBATCH --account=def-someprof # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00 # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=4 # adjust this to match the number of cores to use
#SBATCH --mem-per-cpu=4G # adjust this according to the memory you need per cpu
<div lang="en" dir="ltr" class="mw-content-ltr">
# Load modules dependencies.
module load StdEnv/2023 python/3.11
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# create the virtual environment on the compute node:
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
pip install --no-index --upgrade pip
pip install --no-index -r pykeops-2.2.3-requirements.txt
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# test that everything is OK
python -c 'import pykeops; pykeops.test_numpy_bindings()'
#!/bin/bash
</div>
#SBATCH --account=def-someprof # adjust this to match the accounting group you are using to submit jobs
#SBATCH --time=08:00:00 # adjust this to match the walltime of your job
#SBATCH --cpus-per-task=4 # adjust this to match the number of cores to use
#SBATCH --mem-per-cpu=4G # adjust this according to the memory you need per cpu
#SBATCH --gpus=1
<div lang="en" dir="ltr" class="mw-content-ltr">
# Load modules dependencies. The custom-ctypes is critical here.
module load StdEnv/2023 python/3.11 cuda/12 custom-ctypes
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# create the virtual environment on the compute node:
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
pip install --no-index --upgrade pip
pip install --no-index -r pykeops-2.2.3-requirements.txt
</div>
<div lang="en" dir="ltr" class="mw-content-ltr">
# test that nvrtc binding are also found
python -c 'import pykeops; pykeops.test_numpy_bindings()'
2. Submit your job to the scheduler. Before submitting your job, it is important to test that your submission script will start without errors. You can do a quick test in an interactive job.
[name@server ~]$ sbatch submit-keops.sh