Gurobi
Gurobi est une suite logicielle du commerce qui permet de résoudre des problèmes complexes d'optimisation. Nous abordons ici son utilisation pour la recherche sur les grappes de Calcul Canada. Des renseignements additionnels seront fournis dès que disponibles.
Limites de la licence
Compute Canada supports and provides a free license to use Gurobi on the Graham, Cedar, Beluga and Niagara clusters. The license provides a total number of 4096 simultaneous uses (tokens in use) and permits distributed optimization with up to 100 nodes. A single user can run multiple simultaneous jobs. In order to use Gurobi you must agree to certain conditions. Please contact support and include a copy of the following completed Academic Usage Agreement. You will then be added into the Compute Canada license file as a permitted user within a few days:
Academic Usage Agreement
My Compute Canada username is "_______" and I am a member of the academic institution "_____________________". This message confirms that I will only use the Compute Canada Gurobi license provided on Compute Canada systems for the purpose of non-commercial research project(s) to be published in publicly available article(s).
Allocations initeractives
Ligne de commande
[gra-login2:~] salloc --time=1:00:0 --cpus-per-task=8 --mem=1G --account=def-xyz [gra800:~] module load gurobi [gra800:~] gurobi_cl Record=1 Threads=8 Method=2 ResultFile=p0033.sol LogFile=p0033.log $GUROBI_HOME/examples/data/p0033.mps [gra800:~] gurobi_cl --help
Gurobi Interactive Shell
[gra-login2:~] salloc --time=1:00:0 --cpus-per-task=8 --mem=1G --account=def-xyz [gra800:~] module load gurobi [gra800:~] echo "Record 1" > gurobi.env see * [gra800:~] gurobi.sh gurobi> m = read('/cvmfs/restricted.computecanada.ca/easybuild/software/2017/Core/gurobi/8.1.1/examples/data/glass4.mps') gurobi> m.Params.Threads = 8 see ** gurobi> m.Params.Method = 2 gurobi> m.Params.ResultFile = "glass4.sol" gurobi> m.Params.LogFile = "glass4.log" gurobi> m.optimize() gurobi> m.write('glass4.lp') gurobi> m.status see *** gurobi> m.runtime see **** gurobi> help()
where
* https://www.gurobi.com/documentation/8.1/refman/recording_api_calls.html ** https://www.gurobi.com/documentation/8.1/refman/parameter_descriptions.html *** https://www.gurobi.com/documentation/8.1/refman/optimization_status_codes.html **** https://www.gurobi.com/documentation/8.1/refman/attributes.html
Replay API Call Recording
[gra800:~] gurobi_cl recording000.grbr
Référence: https://www.gurobi.com/documentation/8.1/refman/recording_api_calls.html
Tâches en lots
Model in LP-format
This is an example job script for an optimization model written in the LP format.
#!/bin/bash
#SBATCH --time=0:30 # time limit (D-HH:MM)
#SBATCH --mem-per-cpu=1000M # memory per CPU (in MB)
module purge
module load gurobi
# Create environment file in current directory setting the number of threads:
echo "Threads ${SLURM_CPUS_ON_NODE:-1}" > gurobi.env
gurobi_cl ${GUROBI_HOME}/examples/data/coins.lp
Job using Gurobi Python
This is an example jobscript for a model using Gurobi-Python.
#!/bin/bash
#SBATCH --time=0-00:30 # time limit (D-HH:MM)
#SBATCH --cpus-per-task=1 # number of CPUs (threads) to use
#SBATCH --mem-per-cpu=1000M # memory per CPU (in MB)
module purge
module load gurobi
# Create environment file in current directory setting the number of threads:
echo "Threads ${SLURM_CPUS_ON_NODE:-1}" > gurobi.env
gurobi.sh ${GUROBI_HOME}/examples/python/facility.py
Environnements virtuels Python
Gurobi brings it's own version of Python but that one does not contain any 3rd-party Python packages except Gurobi. In order to use Gurobi together with popular Python
packages like NumPy, Matplotlib, Pandas and others, we need to create a virtual Python environment in which we can install both gurobipy
and e.g. pandas
.
Before we start, we need to decide which combination of versions for Gurobi and Python to use.
[name@server ~] $ module load gurobi/8.1.1
[name@server ~] $ cd $EBROOTGUROBI/lib
[name@server ~] $ ls -dF python*
python2.7/ python2.7_utf32/ python3.6_utf32/
python2.7_utf16/ python3.5_utf32/ python3.7_utf32/
[name@server ~] $ module load gurobi/9.0.1
[name@server ~] $ cd $EBROOTGUROBI/lib
[name@server ~] $ ls -dF python*
python2.7_utf16/ python3.5_utf32/ python3.7/ python3.8_utf32/
python2.7_utf32/ python3.6_utf32/ python3.7_utf32/
[name@server ~] $ cd
We see that gurobi/8.1.1
brings it's own installation of python2.7/
and Python packages for Python 2.7, 3.5, 3.6 and 3.7 (pythonX.Y_utf32/
),
while gurobi/9.0.1
by default uses python3.7/
and brings Python packages for Python 2.7, 3.5, 3.6, 3.7 and 3.8 (pythonX.Y_utf32/
).
In this example we want to create a Python environment based on python/3.7
in which we want to use gurobi/9.0.1
and install the Pandas package.
Créer un environnement virtuel Python
These steps need to be done only once per system.
The first step is to load the modules, create the virtual environment and activate it.
[name@server ~] $ module load gurobi/9.0.1 python/3.7
[name@server ~] $ virtualenv --no-download ~/env_gurobi
Using base prefix '/cvmfs/soft.computecanada.ca/easybuild/software/2017/Core/python/3.7.4'
New python executable in /home/name/env_gurobi/bin/python
Installing setuptools, pip, wheel...
done.
[name@server ~] $ source ~/env_gurobi/bin/activate
Now that the environment has been activated we can install the Python packages we want to use, in this case pandas
.
The third step is to install gurobipy into the environment:
(env_gurobi) [name@server ~] $ cd $EBROOTGUROBI
(env_gurobi) [name@server ~] $ python setup.py build --build-base /tmp/${USER} install
running build
running build_py
creating /tmp/name
creating /tmp/name/lib
creating /tmp/name/lib/gurobipy
copying lib/python3.7_utf32/gurobipy/__init__.py -> /tmp/name/lib/gurobipy
copying lib/python3.7_utf32/gurobipy/gurobipy.so -> /tmp/name/lib/gurobipy
running install
running install_lib
creating /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy
copying /tmp/name/lib/gurobipy/gurobipy.so -> /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy
copying /tmp/name/lib/gurobipy/__init__.py -> /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy
byte-compiling /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy/__init__.py to __init__.cpython-37.pyc
running install_egg_info
Writing /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy-9.0.1-py3.7.egg-info
(env_gurobi) [name@server ~] $ cd
Using the Gurobi-enabled virtual environment
Python scripts can now import both Pandas and Gurobi:
import pandas as pd import numpy as np import gurobipy as gurobi from gurobipy import * # [...]
Once created we can activate Gurobi and the environment with:
module load gurobi/9.0.1 source ~/env_gurobi/bin/activate python my_gurobi_script.py
Remarquez que nous utilisons maintenant python
plutôt que gurobi.sh
.
Voici un exemple de script pour une tâche :
#!/bin/bash
#SBATCH --time=0-00:30 # time limit (D-HH:MM)
#SBATCH --cpus-per-task=1 # number of CPUs (threads) to use
#SBATCH --mem-per-cpu=1000M # memory per CPU (in MB)
module purge
module load gurobi/9.0.1
source ~/env_gurobi/bin/activate
# Create environment file in current directory setting the number of threads:
echo "Threads ${SLURM_CPUS_ON_NODE:-1}" > gurobi.env
python my_gurobi_script.py
Cite Gurobi
Please see How do I cite Gurobi software for an academic publication?