Gurobi
Gurobi est une suite logicielle du commerce qui permet de résoudre des problèmes complexes d'optimisation. Nous abordons ici son utilisation pour la recherche sur les grappes de Calcul Canada. Des renseignements additionnels seront fournis dès que disponibles.
Limites de la licence
Calcul Canada dispense le soutien technique pour la licence gratuite disponible sur Graham, Cedar, Béluga et Niagara. Cette licence permet 4096 utilisations simultanées (avec jetons) et l'optimisation distribuée sur un maximum de 100 nœuds. Un utilisateur peut faire exécuter plusieurs tâches en simultané. Vous devez cependant accepter certaines conditions. Faites parvenir un courriel au soutien technique avec l'entente (Academic Usage Agreement) dûment complétée; vous pourrez ensuite utiliser les applications après un délai de quelques jours.
Academic Usage Agreement
My Compute Canada username is "_______" and I am a member of the academic institution "_____________________". This message confirms that I will only use the Compute Canada Gurobi license provided on Compute Canada systems for the purpose of non-commercial research project(s) to be published in publicly available article(s).
où
* https://www.gurobi.com/documentation/8.1/refman/recording_api_calls.html ** https://www.gurobi.com/documentation/8.1/refman/parameter_descriptions.html *** https://www.gurobi.com/documentation/8.1/refman/optimization_status_codes.html **** https://www.gurobi.com/documentation/8.1/refman/attributes.html
$ module load gurobi $ gurobi_cl 1> /dev/null && echo Success || echo Fail
Allocations interactives
Ligne de commande
[gra-login2:~] salloc --time=1:00:0 --cpus-per-task=8 --mem=1G --account=def-xyz [gra800:~] module load gurobi [gra800:~] gurobi_cl Record=1 Threads=8 Method=2 ResultFile=p0033.sol LogFile=p0033.log $GUROBI_HOME/examples/data/p0033.mps [gra800:~] gurobi_cl --help
- Create environment file in current directory setting the number of threads:
echo "Threads ${SLURM_CPUS_ON_NODE:-1}" > gurobi.env
où
* https://www.gurobi.com/documentation/8.1/refman/recording_api_calls.html ** https://www.gurobi.com/documentation/8.1/refman/parameter_descriptions.html *** https://www.gurobi.com/documentation/8.1/refman/optimization_status_codes.html **** https://www.gurobi.com/documentation/8.1/refman/attributes.html
Répéter des appels API
Il est possible d'enregistrer des appels API et de rejouer l'enregistrement avec la commande
[gra800:~] gurobi_cl recording000.grbr
Référence : https://www.gurobi.com/documentation/8.1/refman/recording_api_calls.html
Répéter des appels API
Il est possible d'enregistrer des appels API et de rejouer l'enregistrement avec la commande
Format LP
Remarquez que nous utilisons maintenant python
plutôt que gurobi.sh
.
Comment citer Gurobi
- use a version >= 9.0.3
module load StdEnv/2020 module load gurobi/9.1.0
gurobi_cl ${GUROBI_HOME}/examples/data/coins.lp }}
Job using Gurobi Python
This is an example jobscript for a model using Gurobi-Python.
#!/bin/bash
#SBATCH --account=def-group # some account
#SBATCH --time=0-00:30 # time limit (D-HH:MM)
#SBATCH --cpus-per-task=1 # number of CPUs (threads) to use
#SBATCH --mem-per-cpu=1000M # memory per CPU (in MB)
# use a version <= 9.0.2
module load StdEnv/2016.4 # or StdEnv/2018.3
module load gurobi/9.0.2
# Create environment file in current directory setting the number of threads:
echo "Threads ${SLURM_CPUS_ON_NODE:-1}" > gurobi.env
gurobi.sh ${GUROBI_HOME}/examples/python/facility.py
Environnements virtuels Python
Gurobi brings it's own version of Python but that one does not contain any 3rd-party Python packages except Gurobi. In order to use Gurobi together with popular Python
packages like NumPy, Matplotlib, Pandas and others, we need to create a virtual Python environment in which we can install both gurobipy
and e.g. pandas
.
Before we start, we need to decide which combination of versions for Gurobi and Python to use.
[name@server ~] $ module load gurobi/8.1.1
[name@server ~] $ cd $EBROOTGUROBI/lib
[name@server ~] $ ls -dF python*
python2.7/ python2.7_utf32/ python3.6_utf32/
python2.7_utf16/ python3.5_utf32/ python3.7_utf32/
[name@server ~] $ module load gurobi/9.0.1
[name@server ~] $ cd $EBROOTGUROBI/lib
[name@server ~] $ ls -dF python*
python2.7_utf16/ python3.5_utf32/ python3.7/ python3.8_utf32/
python2.7_utf32/ python3.6_utf32/ python3.7_utf32/
[name@server ~] $ cd
We see that gurobi/8.1.1
brings it's own installation of python2.7/
and Python packages for Python 2.7, 3.5, 3.6 and 3.7 (pythonX.Y_utf32/
),
while gurobi/9.0.1
by default uses python3.7/
and brings Python packages for Python 2.7, 3.5, 3.6, 3.7 and 3.8 (pythonX.Y_utf32/
).
In this example we want to create a Python environment based on python/3.7
in which we want to use gurobi/9.0.1
and install the Pandas package.
Créer un environnement virtuel Python
Cette procédure est effectuée une seule fois pour chaque système.
Chargez d'abord les modules pour créer l'environnement virtuel, puis activez l'environnement.
[name@server ~] $ module load gurobi/9.0.1 python/3.7
[name@server ~] $ virtualenv --no-download ~/env_gurobi
Using base prefix '/cvmfs/soft.computecanada.ca/easybuild/software/2017/Core/python/3.7.4'
New python executable in /home/name/env_gurobi/bin/python
Installing setuptools, pip, wheel...
done.
[name@server ~] $ source ~/env_gurobi/bin/activate
Une fois l'environnement activé, vous pouvez installer les paquets Python que vous voulez, ici pandas
.
Installez ensuite gurobipy dans l'environnement.
(env_gurobi) [name@server ~] $ cd $EBROOTGUROBI
(env_gurobi) [name@server ~] $ python setup.py build --build-base /tmp/${USER} install
running build
running build_py
creating /tmp/name
creating /tmp/name/lib
creating /tmp/name/lib/gurobipy
copying lib/python3.7_utf32/gurobipy/__init__.py -> /tmp/name/lib/gurobipy
copying lib/python3.7_utf32/gurobipy/gurobipy.so -> /tmp/name/lib/gurobipy
running install
running install_lib
creating /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy
copying /tmp/name/lib/gurobipy/gurobipy.so -> /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy
copying /tmp/name/lib/gurobipy/__init__.py -> /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy
byte-compiling /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy/__init__.py to __init__.cpython-37.pyc
running install_egg_info
Writing /home/name/env_gurobi/lib/python3.7/site-packages/gurobipy-9.0.1-py3.7.egg-info
(env_gurobi) [name@server ~] $ cd
Using the Gurobi-enabled virtual environment
Python scripts can now import both Pandas and Gurobi:
import pandas as pd import numpy as np import gurobipy as gurobi from gurobipy import * # [...]
Once created we can activate Gurobi and the environment with:
module load gurobi/9.0.1 source ~/env_gurobi/bin/activate python my_gurobi_script.py
Note that we now use python
instead of gurobi.sh
!
And this is an example job script that we can use:
#!/bin/bash
#SBATCH --time=0-00:30 # time limit (D-HH:MM)
#SBATCH --cpus-per-task=1 # number of CPUs (threads) to use
#SBATCH --mem-per-cpu=1000M # memory per CPU (in MB)
module load StdEnv/2016.4
module load gurobi/9.0.1
source ~/env_gurobi/bin/activate
# Create environment file in current directory setting the number of threads:
echo "Threads ${SLURM_CPUS_ON_NODE:-1}" > gurobi.env
python my_gurobi_script.py
Cite Gurobi
Please see How do I cite Gurobi software for an academic publication?