Flax: Difference between revisions

Jump to navigation Jump to search
6,122 bytes added ,  2 years ago
No edit summary
Line 175: Line 175:
   main()
   main()
}}
}}
== Data Parallelism with Multiple GPUs ==
Data Parallelism, in this context, refers to methods to perform training over multiple replicas of a model in parallel, where each replica receives a different chunk of training data at each iteration. Gradients are then aggregated at the end of an iteration and the parameters of all replicas are updated in a synchronous or asynchronous fashion, depending on the method. Using this approach may provide a significant speed-up by iterating through all examples in a large dataset approximately N times faster, where N is the number of model replicas. An important caveat of this approach, is that in order to get a trained model that is equivalent to the same model trained without Data Parallelism, the user must scale either the learning rate or the desired batch size in function of the number of replicas. See [https://discuss.pytorch.org/t/should-we-split-batch-size-according-to-ngpu-per-node-when-distributeddataparallel/72769/13 this discussion] for more information. In the examples that follow, each GPU hosts a replica of your model. Consequently, the model must be small enough to fit inside the memory of a single GPU.
=== Single Node ===
{{File
  |name=flax-example-multigpu.sh
  |lang="bash"
  |contents=
#!/bin/bash
#SBATCH --nodes 1
#SBATCH --tasks-per-node=1
#SBATCH --cpus-per-task=1 # increase this if using num_workers > 0 to load data in parallel
#SBATCH --gres=gpu:2
#SBATCH --mem=8G     
#SBATCH --time=0:05:00
#SBATCH --output=%N-%j.out
#SBATCH --account=<your account>
module load python # Using Default Python version - Make sure to choose a version that suits your application
module load cuda
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install flax tensorflow torchvision --no-index
echo "starting training..."
python flax-example-multigpu.py
}}
{{File
  |name=flax-example-multigpu.py
  |lang="python"
  |contents=
from flax import linen as nn
from flax.training import train_state
from flax import jax_utils
import jax
import jax.numpy as jnp
import numpy as np
import optax
import time
import os
import functools
from torchvision import transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import argparse
parser = argparse.ArgumentParser(description='cifar10 classification models, cpu performance test')
parser.add_argument('--lr', default=0.1, help='')
parser.add_argument('--batch_size', type=int, default=512, help='')
parser.add_argument('--num_workers', type=int, default=0, help='')
def main():
  args = parser.parse_args()
  seed = jax.random.PRNGKey(42)
  n_devices = jax.local_device_count() # get umber of GPUs available to the job
  class Net(nn.Module):
      @nn.compact
      def __call__(self,x):
        x = nn.Conv(features=6, kernel_size=(5, 5))(x)
        x = nn.relu(x)
        x = nn.max_pool(x, window_shape=(2, 2))
        x = nn.Conv(features=16, kernel_size=(5, 5))(x)
        x = nn.relu(x)
        x = nn.max_pool(x, window_shape=(2, 2))
        x = x.reshape((x.shape[0], -1))
        x = nn.Dense(features=120)(x)
        x = nn.relu(x)
        x = nn.Dense(features=84)(x)
        x = nn.relu(x)
        x = nn.Dense(features=10)(x)
        return x
  class CastToJnp(object):
      def __call__(self, image):
        return np.array(image, dtype=jnp.float32)
  model = Net()
  params = model.init(seed, jnp.ones([3,32,32]))['params']
  optimizer = optax.sgd(args.lr)
  state = train_state.TrainState.create(apply_fn=model.apply, params=params, tx=optimizer)
  state = jax_utils.replicate(state) # broadcast model replicas to all GPUs
  # Neither Flax or JAX provide pre-processing / data loading code. Here we use PyTorch for the job.
  transform_train = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), CastToJnp()])
  dataset_train = CIFAR10(root='./data', train=True, download=False, transform=transform_train)
  train_loader = DataLoader(dataset_train, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_jax)
  perf = []
  for batch_idx, (inputs, targets) in enumerate(train_loader):
     
      # Split a batch into "n_devices" sub-batches
      inputs = inputs.reshape(n_devices, inputs.shape[0] // n_devices, *inputs.shape[1:])
      targets = targets.reshape(n_devices, targets.shape[0] // n_devices, *targets.shape[1:])
      start = time.time()
      state, loss = train_step(state, inputs, targets)
      batch_time = time.time() - start
      images_per_sec = args.batch_size/batch_time
      perf.append(images_per_sec)
      print(f"Current Loss: {loss}")
  print(f"Images processed per second: {np.mean(perf)}")
# "jax.pmap" parallelizes inputs, function evaluation and outputs over a given axis.
# This axis is first dimension of the inputs by default - it is the number of GPUs in this case.
# jax.map also JIT compiles the function, just like @jax.jit in the single GPU case.
@functools.partial(jax.pmap, axis_name='gpus')
def train_step(state, inputs, targets):
  def compute_loss(params):
      outputs = state.apply_fn({'params': params}, inputs)
      one_hot = jax.nn.one_hot(targets, 10)
      loss = jnp.mean(optax.softmax_cross_entropy(logits=outputs, labels=one_hot))
      return loss
  backward = jax.value_and_grad(compute_loss)
  loss, grads = backward(state.params)
  grads = jax.lax.pmean(grads, axis_name='gpus') # compute the average of gradients of all model replicas
  loss = jax.lax.pmean(loss, axis_name='gpus')  # do the same with the loss
  updated_state = state.apply_gradients(grads=grads) # weight update is computed with averaged gradients from all replicas
  return updated_state, loss
def collate_jax(batch):
  if isinstance(batch[0], np.ndarray):
      return np.stack(batch)
  elif isinstance(batch[0], (tuple,list)):
      transposed = zip(*batch)
      return [collate_jax(samples) for samples in transposed]
  else:
      return np.array(batch)
if __name__=='__main__':
  main()
}}
=== Multiple Nodes ===
cc_staff
282

edits

Navigation menu