Modules avx512: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 1,508: Line 1,508:
| align="center" | bio
| align="center" | bio
| align="center" | 1.30, 1.31
| align="center" | 1.30, 1.31
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: FragGeneScan is an application for finding (fragmented) genes in short reads. Homepage: http://omics.informatics.indiana.edu/FragGeneScan/ URL: http://omics.informatics.indiana.edu/FragGeneScan/ Keyword:bio<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: FragGeneScan is an application for finding (fragmented) genes in short reads. Homepage: http://omics.informatics.indiana.edu/FragGeneScan/ Keyword:bio<br /><br /><br /></div>
|-
|-
| align="center" | [http://grigoriefflab.janelia.org/frealign frealign]
| align="center" | [http://grigoriefflab.janelia.org/frealign frealign]
Line 1,632: Line 1,632:
| align="center" | [https://github.com/NVIDIA/gdrcopy gdrcopy]
| align="center" | [https://github.com/NVIDIA/gdrcopy gdrcopy]
| align="center" | -
| align="center" | -
| align="center" | 2.1, 2.3.1
| align="center" | 2.1, 2.3, 2.3.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: A low-latency GPU memory copy library based on NVIDIA GPUDirect RDMA technology. Homepage: https://github.com/NVIDIA/gdrcopy URL: https://github.com/NVIDIA/gdrcopy<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: A low-latency GPU memory copy library based on NVIDIA GPUDirect RDMA technology. Homepage: https://github.com/NVIDIA/gdrcopy URL: https://github.com/NVIDIA/gdrcopy<br /><br /><br /></div>
|-
|-
Line 1,773: Line 1,773:
| align="center" | tools
| align="center" | tools
| align="center" | 0.3.1
| align="center" | 0.3.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: This is GLOST, the Greedy Launcher Of Small Tasks. Homepage: https://github.com/cea-hpc/glost URL: https://github.com/cea-hpc/glost Keyword:tools<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: This is GLOST, the Greedy Launcher Of Small Tasks. Homepage: https://github.com/cea-hpc/glost Keyword:tools<br /><br /><br /></div>
|-
|-
| align="center" | [https://www.gnu.org/software/glpk/ glpk]
| align="center" | [https://www.gnu.org/software/glpk/ glpk]
Line 2,978: Line 2,978:
| align="center" | math
| align="center" | math
| align="center" | 4.0.3, 5.1.0
| align="center" | 4.0.3, 5.1.0
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. Homepage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview Keyword:math<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: METIS is a set of serial programs for partitioning graphs, partitioning finite element meshes, and producing fill reducing orderings for sparse matrices. The algorithms implemented in METIS are based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning schemes. Homepage: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview URL: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview Keyword:math<br /><br /><br /></div>
|-
|-
| align="center" | [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview metis-64idx]
| align="center" | [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview metis-64idx]
Line 3,023: Line 3,023:
| align="center" | bio
| align="center" | bio
| align="center" | 2.0.1
| align="center" | 2.0.1
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Minimac3 is a lower memory and more computationally efficient implementation of the genotype imputation algorithms in minimac and minimac2. Minimac3 is designed to handle very large reference panels in a more computationally efficient way with no loss of accuracy. Homepage: http://genome.sph.umich.edu/wiki/Minimac3 Keyword:bio<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: Minimac3 is a lower memory and more computationally efficient implementation of the genotype imputation algorithms in minimac and minimac2. Minimac3 is designed to handle very large reference panels in a more computationally efficient way with no loss of accuracy. Homepage: http://genome.sph.umich.edu/wiki/Minimac3 URL: http://genome.sph.umich.edu/wiki/Minimac3 Keyword:bio<br /><br /><br /></div>
|-
|-
| align="center" | [https://genome.sph.umich.edu/wiki/Minimac4 minimac4]
| align="center" | [https://genome.sph.umich.edu/wiki/Minimac4 minimac4]
Line 4,487: Line 4,487:
| align="center" | [https://repast.github.io/ repasthpc]
| align="center" | [https://repast.github.io/ repasthpc]
| align="center" | bio
| align="center" | bio
| align="center" | 2.2.0, 2.3.0
| align="center" | 2.0, 2.2.0, 2.3.0
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: The Repast Suite is a family of advanced, free, and open source agent-based modeling and simulation platforms that have collectively been under continuous development for over 15 years: Repast for High Performance Computing 2.2.0, released on 30 September 2016, is a lean and expert-focused C++-based modeling system that is designed for use on large computing clusters and supercomputers. Homepage: https://repast.github.io/ URL: https://repast.github.io/ Keyword:bio<br /><br /><br /></div>
| <div class="mw-collapsible mw-collapsed" style="white-space: pre-line;"><br />Description: The Repast Suite is a family of advanced, free, and open source agent-based modeling and simulation platforms that have collectively been under continuous development for over 15 years: Repast for High Performance Computing 2.2.0, released on 30 September 2016, is a lean and expert-focused C++-based modeling system that is designed for use on large computing clusters and supercomputers. Homepage: https://repast.github.io/ URL: https://repast.github.io/ Keyword:bio<br /><br /><br /></div>
|-
|-

Navigation menu