GPAW
General
GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method and the atomic simulation environment (ASE).
Creating a GPAW virtual environment
We provide precompiled Python wheels for GPAW that can be installed into a virtual python environment.
1. Check which versions of gpaw are available:
[name@server ~] avail_wheels gpaw
name version python arch
------ --------- -------- ------
gpaw 22.8.0 cp39 avx2
gpaw 22.8.0 cp38 avx2
gpaw 22.8.0 cp310 avx2
2. Load a Python module (e.g. python/3.10)
(ENV) [name@server ~] module load python/3.10
3. Create a new virtualenv
[name@server ~] virtualenv --no-download venv_gpaw
created virtual environment CPython3.10.2.final.0-64 in 514ms
[...]
4. Activate the virtualenv (venv)
[name@server ~] source venv_gpaw/bin/activate
5. Install gpaw into venv
(venv_gpaw) [name@server ~] pip install --no-index gpaw
[...]
Successfully installed ... gpaw-22.8.0+computecanada ...
6. Download the data and install it into the SCRATCH filesystem
(venv_gpaw) [name@server ~] gpaw install-data $SCRATCH
Available setups and pseudopotentials
[*] https://wiki.fysik.dtu.dk/gpaw-files/gpaw-setups-0.9.20000.tar.gz
[...]
Setups installed into /scratch/name/gpaw-setups-0.9.20000.
Register this setup path in /home/name/.gpaw/rc.py? [y/n] n
As you wish.
[...]
Installation complete.
7. Now set GPAW_SETUP_PATH to point to the data directory
(venv_gpaw) [name@server ~] export GPAW_SETUP_PATH=$SCRATCH/gpaw-setups-0.9.20000
8. We can run the tests, which are very fast:
(venv_gpaw) [name@server ~] gpaw test
------------------------------------------------------------------------------------------------------------
| python-3.10.2 /home/name/venv_gpaw/bin/python |
| gpaw-22.8.0 /home/name/venv_gpaw/lib/python3.10/site-packages/gpaw/ |
| ase-3.22.1 /home/name/venv_gpaw/lib/python3.10/site-packages/ase/ |
| numpy-1.23.0 /home/name/venv_gpaw/lib/python3.10/site-packages/numpy/ |
| scipy-1.9.3 /home/name/venv_gpaw/lib/python3.10/site-packages/scipy/ |
| libxc-5.2.3 yes |
| _gpaw /home/name/venv_gpaw/lib/python3.10/site-packages/_gpaw.cpython-310-x86_64-linux-gnu.so |
| MPI enabled yes |
| OpenMP enabled yes |
| scalapack yes |
| Elpa no |
| FFTW yes |
| libvdwxc no |
| PAW-datasets (1) /scratch/name/gpaw-setups-0.9.20000 |
-----------------------------------------------------------------------------------------------------------
Doing a test calculation (cores: 1): ... Done
Test parallel calculation with "gpaw -P 4 test".
(venv_gpaw) [name@server ~] gpaw -P 4 test
------------------------------------------------------------------------------------------------------------
| python-3.10.2 /home/name/venv_gpaw/bin/python |
| gpaw-22.8.0 /home/name/venv_gpaw/lib/python3.10/site-packages/gpaw/ |
| ase-3.22.1 /home/name/venv_gpaw/lib/python3.10/site-packages/ase/ |
| numpy-1.23.0 /home/name/venv_gpaw/lib/python3.10/site-packages/numpy/ |
| scipy-1.9.3 /home/name/venv_gpaw/lib/python3.10/site-packages/scipy/ |
| libxc-5.2.3 yes |
| _gpaw /home/name/venv_gpaw/lib/python3.10/site-packages/_gpaw.cpython-310-x86_64-linux-gnu.so |
| MPI enabled yes |
| OpenMP enabled yes |
| scalapack yes |
| Elpa no |
| FFTW yes |
| libvdwxc no |
| PAW-datasets (1) /scratch/name/gpaw-setups-0.9.20000 |
-----------------------------------------------------------------------------------------------------------
Doing a test calculation (cores: 4): ... Done
Results of the last test can be found in the file test.txt
that will be created in the current directory.
Example Jobscript
A jobscript may look something like this for hybrid (OpenMP and MPI) parallelization. This assumes that the virtualenv is in your $HOME directory and the PAW-datasets in $SCRATCH as shown above.
#!/bin/bash
#SBATCH --ntasks=8
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=4000M
#SBATCH --time=0-01:00
module load gcc/9.3.0 openmpi/4.0.3
source ~/venv_gpaw/bin/activate
export OMP_NUM_THREADS="${SLURM_CPUS_PER_TASK:-1}"
export GPAW_SETUP_PATH=/scratch/$USER/gpaw-setups-0.9.20000
srun --cpus-per-task=$OMP_NUM_THREADS gpaw python my_gpaw_script.py
This would use a single node with 8 MPI-ranks (ntasks) and 4 OpenMP threads per MPI rank (cpus-per-task) so a total of 32 CPUs.
You probably want to adjust those numbers so that the product matches the number of cores of a whole node
(i.e. 32 at Graham, 40 at Béluga and Niagara, 48 at Cedar or 64 at Narval).
Setting OMP_NUM_THREADS
as shown above, makes sure it is always set to the same value as cpus-per-task or 1 in case cpus-per-task is not set.
Loading the modules gcc/9.3.0
and openmpi/4.0.3
ensures that the exact MPI library is used for the job, as was used for building the wheels.