Allocations and compute scheduling/fr: Difference between revisions

Jump to navigation Jump to search
no edit summary
No edit summary
No edit summary
Line 30: Line 30:
La performance des GPU a considérablement augmenté ces dernières années et continue sa progression. Par le passé et jusqu'au concours de 2023, nous considérions tous les GPU comme étant équivalents les uns aux autres. Ceci posait des problèmes à la fois dans le processus d'attribution et lors de l'exécution des tâches. Pour contrer ceci, nous avons créé pour l'année 2024 l'unité GPU de référence (UGR) qui permet de classer tous les modèles de GPU en production. Pour la période d'allocation de 2025-2026, nous devrons tenir compte de la technologie des [[Multi-Instance GPU/fr|GPU multi-instances]] qui rend la situation un peu plus complexe.
La performance des GPU a considérablement augmenté ces dernières années et continue sa progression. Par le passé et jusqu'au concours de 2023, nous considérions tous les GPU comme étant équivalents les uns aux autres. Ceci posait des problèmes à la fois dans le processus d'attribution et lors de l'exécution des tâches. Pour contrer ceci, nous avons créé pour l'année 2024 l'unité GPU de référence (UGR) qui permet de classer tous les modèles de GPU en production. Pour la période d'allocation de 2025-2026, nous devrons tenir compte de la technologie des [[Multi-Instance GPU/fr|GPU multi-instances]] qui rend la situation un peu plus complexe.


<div class="mw-translate-fuzzy">
Parce qu'environ la moitié des tâches utilisent principalement des opérations à virgule flottante simple précision ([https://en.wikipedia.org/wiki/Single-precision_floating-point_format FP32]), que les autres utilisent des opérations à virgule flottante demi-précision ([https://en.wikipedia.org/wiki/Half-precision_floating-point_format FP16, matrices denses]), et que la plupart des utilisateurs sont limités par la quantité de mémoire des GPU, nous classons les modèles de GPU selon les critères d'évaluation avec leur poids correspondant&nbsp;:
Afin de résoudre le problème d'équité, nous avons créé l'<i>unité GPU de référence</i> (ou <i>UGR</i>) qui nous permet de classer les différents modèles de GPU en production sur la base de leur performance nominale. Parce qu'environ la moitié des tâches utilisent principalement des opérations à virgule flottante simple précision ([https://en.wikipedia.org/wiki/Single-precision_floating-point_format FP32]) et que les autres utilisent des opérations à virgule flottante demi-précision ([https://en.wikipedia.org/wiki/Half-precision_floating-point_format FP16]), et que la plupart des utilisateurs se soucient de la mémoire sur du GPU lui-même, nous avons établi les critères d'évaluation suivants avec leur poids correspondant :
</div>


{| class="wikitable" style="margin: auto;"
{| class="wikitable" style="margin: auto;"
rsnt_translations
56,430

edits

Navigation menu